[1] 武海荣,金伟良,延永东,等.混凝土冻融环境区划与抗冻性寿命预测[J].浙江大学学报(工学版),2012,46(4):650-657. WU H R, JIN W L, YAN Y D, et al. Environmental zonation and life prediction of concrete in frost environments[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(4): 650-657 (in Chinese). [2] 谢 剑,崔 宁,姜晓峰.混凝土超低温冻融循环损伤机理及控制措施[J].硅酸盐通报,2018,37(8):2367-2371+2377. XIE J, CUI N, JIANG X F. Mechanism and improvement of freeze-thaw deterioration of concrete under ultra-low temperature[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2367-2371+2377 (in Chinese). [3] WANG R J, HU Z Y, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze-thaw environment[J]. Construction and Building Materials, 2022, 321: 126371. [4] 何晓雁,张天晓,王辰昊,等.纤维水泥基材料抗冻性与孔结构关系的变化规律[J].硅酸盐通报,2022,41(5):1529-1538. HE X Y, ZHANG T X, WANG C H, et al. Variation of relationship between frost resistance and pore structure of fiber cement-based material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1529-1538 (in Chinese). [5] 姚 武.聚丙烯腈纤维混凝土的低温性能[J].同济大学学报(自然科学版),2004,32(5):627-631. YAO W. Properties of polyacrylonitrile fiber reinforced concrete at low temperatures[J]. Journal of Tongji University (Nature Science Edition), 2004, 32(5): 627-631 (in Chinese). [6] ZENG Y S, ZHOU X Y, TANG A P. Shear performance of fibers-reinforced lightweight aggregate concrete produced with industrial waste ceramsite-Lytag after freeze-thaw action[J]. Journal of Cleaner Production, 2021, 328: 129626. [7] 牛荻涛,姜 磊,白 敏.钢纤维混凝土抗冻性能试验研究[J].土木建筑与环境工程,2012,34(4):80-84+98. NIU D T, JIANG L, BAI M. Experimental analysis on the frost resistance of steel fiber reinforced concrete[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(4): 80-84+98 (in Chinese). [8] 熊小斌,王瑞骏,李 阳,等.单掺和混掺纤维面板混凝土抗盐冻耐久性试验研究[J].水资源与水工程学报,2021,32(3):173-178. XIONG X B, WANG R J, LI Y, et al. Experimental study on salt-freezing durability of single and mixed fiber-doped panel concrete[J]. Journal of Water Resources and Water Engineering, 2021, 32(3): 173-178 (in Chinese). [9] 王志伟,马 福.硫酸盐侵蚀与冻融耦合作用下混凝土损伤研究[J].新型建筑材料,2017,44(11):40-43. WANG Z W, MA F. Study on the damage of concrete under the couple action of sulfate corrosion and freeze-thaw[J]. New Building Materials, 2017, 44(11): 40-43 (in Chinese). [10] 王发洲,黄大凡,杨 进,等.干湿循环对混凝土单面盐冻破坏的影响[J].武汉理工大学学报,2016,38(4):8-13. WANG F Z, HUANG D F, YANG J, et al. The effect of dry-wet circulation on one-sided salt frost damage of concrete[J]. Journal of Wuhan University of Technology, 2016, 38(4): 8-13 (in Chinese). [11] CHEN D S, DENG Y A, SHEN J Y, et al. Study on damage rules on concrete under corrosion of freeze-thaw and saline solution[J]. Construction and Building Materials, 2021, 304: 124617. [12] 刘佳奇,王伯昕,汪 飞.碳酸盐侵蚀-冻融循环条件下混凝土抗压性能试验研究[J].混凝土,2021(11):21-23+28. LIU J Q, WANG B X, WANG F. Experimental study on the compressive property of concrete under CO2-3 attacks and freeze-thaw cycles[J]. Concrete, 2021(11): 21-23+28 (in Chinese). [13] LI G F, SHEN X D. A study of the durability of aeolian sand powder concrete under the coupling effects of freeze-thaw and dry-wet conditions[J]. JOM, 2019, 71(6): 1962-1974. [14] 苏有彪,胡大琳,张 航,等.碳化-冻融作用下钢筋混凝土梁承载力衰减分析[J].硅酸盐通报,2019,38(4):948-956. SU Y B, HU D L, ZHANG H, et al. Analysis on load capacity attenuation of reinforced concrete beam after carbonization and freeze-thaw action[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 948-956 (in Chinese). [15] 郭寅川,申爱琴,何天钦,等.疲劳荷载和冻融循环耦合作用下路面混凝土微裂缝扩展行为[J].交通运输工程学报,2016,16(5):1-9. GUO Y C, SHEN A Q, HE T Q, et al. Micro-crack propagation behavior of pavement concrete subjected to coupling effect of fatigue load and freezing-thawing cycles[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 1-9 (in Chinese). [16] SUN W, ZHANG Y M, YAN H D, et al. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J]. Cement and Concrete Research, 1999, 29(9): 1519-1523. [17] 刘建忠,孙 伟,缪昌文,等.弯曲荷载与盐溶液复合作用下混凝土冻融损伤[J].东南大学学报(自然科学版),2006,36(s2):243-247. LIU J Z, SUN W, MIAO C W, et al. Freeze-thaw damage of concrete under flexural load and salt solution[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(s2): 243-247 (in Chinese). [18] 郭丽萍,张文潇,孙 伟,等.隧道用纤维素纤维混凝土在弯拉荷载作用下的耐久性[J].东南大学学报(自然科学版),2016,46(3):612-618. GUO L P, ZHANG W X, SUN W, et al. Durability of cellulose fiber reinforced concrete under bending load in tunnel engineering[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 612-618 (in Chinese). [19] 宁喜亮,王万平,郝 帅,等.不同纤维对混凝土在多重因素作用下抗冻耐久性的影响[J].工业建筑,2020,50(10):122-128. NING X L, WANG W P, HAO S, et al. Effect of different fibers on frost resistance of concrete under multiple factors[J]. Industrial Construction, 2020, 50(10): 122-128 (in Chinese). [20] YUAN Y, ZHAO R D, LI R, et al. Frost resistance of fiber-reinforced blended slag and Class F fly ash-based geopolymer concrete under the coupling effect of freeze-thaw cycling and axial compressive loading[J]. Construction and Building Materials, 2020, 250: 118831. [21] JIN S S, ZHENG G P, YU J. A micro freeze-thaw damage model of concrete with fractal dimension[J]. Construction and Building Materials, 2020, 257: 119434. [22] WANG B X, WANG F, WANG Q. Damage constitutive models of concrete under the coupling action of freeze-thaw cycles and load based on Lemaitre assumption[J]. Construction and Building Materials, 2018, 173: 332-341. [23] 雷 斌,李召行,邹 俊,等.荷载与腐蚀冻融耦合作用下再生混凝土耐久性能试验[J].农业工程学报,2018,34(20):169-174. LEI B, LI Z H, ZOU J, et al. Experiment on durability of recycled concrete under coupling multi-factors of load and corrosion freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 169-174 (in Chinese). [24] 乔运峰.不同饱水度砼在冻融与疲劳耦合作用下的损伤劣化与寿命预测[D].南京:东南大学,2018:4-5. QIAO Y F. Damage degradation and life prediction of different saturation concrete subjected to coupling fatigue load and freeze/thaw cycles[D]. Nanjing: Southeast University, 2018: 4-5 (in Chinese). [25] WANG C Q, PANG W J, MA Z M, et al. Investigation on mechanical behaviors of a new sustainable composite material for fiber-reinforced recycled aggregate concrete under compressive low-cycle loadings[J]. Construction and Building Materials, 2022, 326: 126916. [26] LOEFFLER C, SUN Q R, HEARD W, et al. The effect of loading duration on damage initiation in high-strength concrete[J]. Mechanics of Materials, 2020, 140: 103216. [27] LI F P, CHEN D F, LU Y Y, et al. Influence of mixed fibers on fly ash based geopolymer resistance against freeze-thaw cycles[J]. Journal of Non-Crystalline Solids, 2022, 584: 121517. [28] 张广泰,刘诗拓,耿天娇,等.基于Weibull分布的冻融循环下纤维混凝土损伤模型[J].科学技术与工程,2020,20(29):12078-12084. ZHANG G T, LIU S T, GENG T J, et al. On damage model of fiber concrete based on the weibull distribution in freezing-thawing cycle[J]. Science Technology and Engineering, 2020, 20(29): 12078-12084 (in Chinese). [29] 贾 祥.韦布尔分布及其可靠性统计方法[M].北京:科学出版社,2021:1-5. JIA X. Weibull distribution and its reliability statistical method[M]. Beijing: Science Press, 2021: 1-5 (in Chinese). [30] 李 刊,魏智强,乔宏霞,等.耦合盐溶液环境下钢筋/混凝土Weibull耐久性寿命预测方法[J].复合材料学报,2021,38(7):2370-2382. LI K, WEI Z Q, QIAO H X, et al. Weibull durability life prediction method of reinforced concrete in environment of coupled salt solution[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2370-2382 (in Chinese). [31] 路承功,魏智强,乔宏霞,等.基于3参数Weibull分布钢筋混凝土盐腐蚀环境中可靠性寿命分析[J].工程科学学报,2021,43(4):512-520. LU C G, WEI Z Q, QIAO H X, et al. Reliability life analysis of reinforced concrete in a salt corrosion environment based on a three-parameter Weibull distribution[J]. Chinese Journal of Engineering, 2021, 43(4): 512-520 (in Chinese). |