[1] WANG D H, SHI C J, WU Z M, et al. A review on ultra high performance concrete: part Ⅱ. Hydration, microstructure and properties[J]. Construction and Building Materials, 2015, 96: 368-377. [2] 陈宝春,季 韬,黄卿维,等.超高性能混凝土研究综述[J].建筑科学与工程学报,2014,31(3):1-24. CHEN B C, JI T, HUANG Q W, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24 (in Chinese). [3] LI J Q, WU Z M, SHI C J, et al. Durability of ultra-high performance concrete: a review[J]. Construction and Building Materials, 2020, 255: 119296. [4] LI X S, SHUI Z H, YU R, et al. Magnesium induced hydration kinetics of ultra-high performance concrete (UHPC) served in marine environment: experiments and modelling[J]. Construction and Building Materials, 2019, 224: 1056-1068. [5] SONG Q L, YU R, SHUI Z H, et al. Macro/micro characteristics variation of ultra-high performance fibre reinforced concrete (UHPFRC) subjected to critical marine environments[J]. Construction and Building Materials, 2020, 256: 119458. [6] KONO K, MUSHA H, KAWAGUCHI T, et al. Durability study of the first PC bridge constructed with ultra-high strength fiber reinforced concrete in Japan[C]//2nd International Symposium on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC), Marseille, France, 2013: 239-248. [7] ABBAS S, SOLIMAN A M, NEHDI M L. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages[J]. Construction and Building Materials, 2015, 75: 429-441. [8] THOMAS M, GREEN B, O'NEAL E, et al. Marine performance of UHPC at Treat Island[C]//3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany, 2012: 365-370. [9] 王 月,安明喆,余自若,等.冻融循环作用下活性粉末混凝土中的氯离子分布及扩散系数[J].建筑材料学报,2016,19(5):810-815+820. WANG Y, AN M Z, YU Z R, et al. Chloride ion distribution and diffusion coefficient of reactive powder concrete under freeze-thaw cycling[J]. Journal of Building Materials, 2016, 19(5): 810-815+820 (in Chinese). [10] 马志鸣,赵铁军,赵彦迪,等.静水压力下混凝土中氯离子传输特性试验研究[J].公路,2012,57(12):168-171. MA Z M, ZHAO T J, ZHAO Y D, et al. Experiment and study on transmission characters of chloride in concrete under hydrostatic pressure[J]. Highway, 2012, 57(12): 168-171 (in Chinese). [11] 赵彦迪.静水压力下混凝土中氯离子传输机理研究[D].青岛:青岛理工大学,2011. ZHAO Y D. Study on the transmission mechanism of chloride in concrete under hydrostatic pressure[D]. Qingdao: Qingdao Tehcnology University, 2011 (in Chinese). [12] 黄 伟.矿物掺合料对超高性能混凝土的水化及微结构形成的影响[D].南京:东南大学,2017. HUANG W. Effect of supplementary cementitious materials on the hydration and microstructural development of ultra-high performance concrete[D]. Nanjing: Southeast University, 2017 (in Chinese). [13] HUANG W, KAZEMI-KAMYAB H, SUN W, et al. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC)[J]. Cement and Concrete Composites, 2017, 77: 86-101. [14] 中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009[S].北京:中国建筑工业出版社,2009. Ministry of Housing and Urban-Rural Development, PRC. Standard of test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Architecture Press, 2009 (in Chinese). [15] 元 强.水泥基材料中氯离子传输试验方法的基础研究[D].长沙:中南大学,2009. YUAN Q. Fundamental studies on test methods for the transport of chloride ions in cementitious materials[D]. Changsha: Central South University, 2009 (in Chinese). [16] KADLEC O, DUBININ M. Comments on the limits of applicability of the mechanism of capillary condensation[J]. Journal of Colloid and Interface Science, 1969, 31(4): 479-489. [17] GROEN J C, PEFFER L A A, PÉREZ-RAMÍREZ J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 1-17. [18] YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2014, 56: 29-39. [19] MILOUD B. Permeability and porosity characteristics of steel fiber reinforced concrete[J]. Asian Journal of Civil Engineering, 2005, 6(4): 317-330. [20] OGIRIGBO O R, BLACK L. Chloride binding and diffusion in slag blends: influence of slag composition and temperature[J]. Construction and Building Materials, 2017, 149: 816-825. [21] FRANCO-LUJÁN V A, MENDOZA-RANGEL J M, JIMÁNEZ-QUERO V G, et al. Chloride-binding capacity of ternary concretes containing fly ash and untreated sugarcane bagasse ash[J]. Cement and Concrete Composites, 2021, 120: 104040. [22] TANG L P, GULIKERS J. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete[J]. Cement and Concrete Research, 2007, 37(4): 589-595. [23] MOHAMMED T U, HAMADA H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1487-1490. [24] CHEEWAKET T, JATURAPITAKKUL C, CHALEE W. Long term performance of chloride binding capacity in fly ash concrete in a marine environment[J]. Construction and Building Materials, 2010, 24(8): 1352-1357. [25] CHALEE W, SASAKUL T, SUWANMANEECHOT P, et al. Utilization of rice husk-bark ash to improve the corrosion resistance of concrete under 5-year exposure in a marine environment[J]. Cement and Concrete Composites, 2013, 37: 47-53. [26] 陈书苹.改善混凝土结合氯离子性能的研究[D].长沙:中南大学,2007. CHEN S P. Study on the improvement of chloride ions binding of concrete[D]. Changsha: Central South University, 2007 (in Chinese). [27] IPAVEC A, VUK T, GABROVEK R, et al. Chloride binding into hydrated blended cements: the influence of limestone and alkalinity[J]. Cement and Concrete Research, 2013, 48: 74-85. [28] YUAN Q, SHI C J, DE SCHUTTER G, et al. Chloride binding of cement-based materials subjected to external chloride environment: a review[J]. Construction and Building Materials, 2009, 23(1): 1-13. [29] 孙丛涛,宋 华,牛荻涛,等.粉煤灰混凝土的氯离子结合性能[J].建筑材料学报,2016,19(1):35-39. SUN C T, SONG H, NIU D T, et al. Chloride binding capacity of fly ash concrete[J]. Journal of Building Materials, 2016, 19(1): 35-39 (in Chinese). |