[1] 朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999. ZHU B F. Thermal stresses and temperature control of mass concrete[M]. Beijing: China Electric Power Press, 1999 (in Chinese). [2] NORRIS A, SAAFI M, ROMINE P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors[J]. Construction and Building Materials, 2008, 22(2): 111-120. [3] 王树和,水中和,玄东兴.大温差环境条件下混凝土表面裂缝损伤[J].东南大学学报(自然科学版),2006,36(S2):122-125. WANG S H, SHUI Z H, XUAN D X. Investigation on surface cracking damage of concrete under big temperature difference[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(S2): 122-125 (in Chinese). [4] 赵燕茹,刘芳芳,王 磊,等.基于孔结构的单面冻后混凝土抗压强度模型研究[J].建筑材料学报,2020,23(6):1328-1336+1344. ZHAO Y R, LIU F F, WANG L, et al. Modeling of compressive strength of concrete based on pore structure under single-side freeze-thaw condition[J]. Journal of Building Materials, 2020, 23(6): 1328-1336+1344 (in Chinese). [5] 张卫东,董 云,彭宁波,等.冻融循环下透水再生混凝土力学性能损伤分析[J].建筑材料学报,2020,23(2):292-296. ZHANG W D, DONG Y, PENG N B, et al. Analysis on mechanical properties of pervious recycled concrete by damage under freeze-thaw cycles[J]. Journal of Building Materials, 2020, 23(2): 292-296 (in Chinese). [6] NADEEM A, MEMON S A, LO T Y. The performance of fly ash and Metakaolin concrete at elevated temperatures[J]. Construction and Building Materials, 2014, 62: 67-76. [7] 褚洪岩,孙 伟,蒋金洋.高温作用下牺牲混凝土的损伤演化[J].硅酸盐学报,2016,44(2):211-217. CHU H Y, SUN W, JIANG J Y. Damage evolution of sacrificial concrete subjected to elevated temperatures[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 211-217 (in Chinese). [8] 韩明明.热疲劳作用对高性能混凝土强度与渗透性能的影响研究[D].北京:北京交通大学,2016. HAN M M. Effect of thermal fatigue on strength and permeability of high performance concrete[D]. Beijing: Beijing Jiaotong University, 2016 (in Chinese). [9] AN M Z, HUANG H F, WANG Y, et al. Effect of thermal cycling on the properties of high-performance concrete: microstructure and mechanism[J]. Construction and Building Materials, 2020, 243: 118310. [10] SHOKRIEH M M, HEIDARI-RARANI M, SHAKOURI M, et al. Effects of thermal cycles on mechanical properties of an optimized polymer concrete[J]. Construction and Building Materials, 2011, 25(8): 3540-3549. [11] AL-TAYYIB A J, BALUCH M H, SHARIF A F M, et al. The effect of thermal cycling on the durability of concrete made from local materials in the Arabian Gulf countries[J]. Cement and Concrete Research, 1989, 19(1): 131-142. [12] WALKER S, BLOEM D L, MULLEN W G. Effects of temperature changes on concrete as influenced by aggregates[J]. American Concrete Institute, 1952, 48(4): 661-679. [13] 王 康,张玉平,章 杰,等.大温差环境下混凝土抗热疲劳性能研究[J].建材世界,2018,39(1):18-21. WANG K, ZHANG Y P, ZHANG J, et al. Research on thermal fatigue resistance of concrete under large temperature difference condition[J]. The World of Building Materials, 2018, 39(1): 18-21 (in Chinese). [14] ZHANG G H, LI Z L, ZHANG L F, et al. Experimental research on drying control condition with minimal effect on concrete strength[J]. Construction and Building Materials, 2017, 135: 194-202. [15] 邵化建,李宗利,肖帅鹏,等.干湿循环作用下混凝土力学性能及微观结构研究[J].硅酸盐通报,2021,40(9):2948-2955. SHAO H J, LI Z L, XIAO S P, et al. Mechanical properties and microstructure of concrete under drying-wetting cycles[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2948-2955 (in Chinese). [16] KANELLOPOULOS A, FARHAT F A, NICOLAIDES D, et al. Mechanical and fracture properties of cement-based bi-materials after thermal cycling[J]. Cement and Concrete Research, 2009, 39(11): 1087-1094. [17] 韩进生,李宗利,张国辉,等.不同强度等级混凝土等温干燥脱水规律[J].建筑材料学报,2018,21(6):963-968. HAN J S, LI Z L, ZHANG G H, et al. Isothermal drying and dehydration of concrete with different strength grades[J]. Journal of Building Materials, 2018, 21(6): 963-968 (in Chinese). [18] DU X Q, LI Z L, HAN J S, et.al. Effect of different humidity-controlling modes on microstructure and compressive behavior of ordinary concrete[J]. Journal of Materials in Civil Engineering, 2020, 32(1): 04019337. [19] 姚 武,郑 欣.配合比参数对混凝土热膨胀系数的影响[J].同济大学学报(自然科学版),2007,35(1):77-81+87. YAO W, ZHENG X. Effect of mix proportion on coefficient of thermal expansion of concrete[J]. Journal of Tongji University (Natural Science), 2007, 35(1): 77-81+87 (in Chinese). [20] TANG S W, HUANG J S, DUAN L, et al. A review on fractal footprint of cement-based materials[J]. Powder Technology, 2020, 370: 237-250. [21] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999. WU Z W, KANG H Z. High performance concrete[M]. Beijing: China Railway Publishing House, 1999 (in Chinese). |