[1] PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes: a cement for the future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329. [2] 施惠生,夏 明,郭晓潞.粉煤灰基地聚合物反应机理及各组分作用的研究进展[J].硅酸盐学报,2013,41(7):972-980. SHI H S, XIA M, GUO X L. Research development on mechanism of fly ash-based geopolymer and effect of each component[J]. Journal of the Chinese Ceramic Society, 2013, 41(7): 972-980 (in Chinese). [3] YIP C K, LUKEY G C, PROVIS J L, et al. Effect of calcium silicate sources on geopolymerisation[J]. Cement and Concrete Research, 2008, 38(4): 554-564. [4] TEMUUJIN J, VAN RIESSEN A, WILLIAMS R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 82-88. [5] KHALE D, CHAUDHARY R. Mechanism of geopolymerization and factors influencing its development: a review[J]. Journal of Materials Science, 2007, 42(3): 729-746. [6] ALLALI F, JOUSSEIN E, KANDRI N I, et al. The influence of calcium content on the performance of metakaolin-based geomaterials applied in mortars restoration[J]. Materials & Design, 2016, 103: 1-9. [7] MEHTA A, SIDDIQUE R. Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash[J]. Construction and Building Materials, 2017, 150: 792-807. [8] YIP C K, PROVIS J L, LUKEY G C, et al. Carbonate mineral addition to metakaolin-based geopolymers[J]. Cement and Concrete Composites, 2008, 30(10): 979-985. [9] PANGDAENG S, PHOO-NGERNKHAM T, SATA V, et al. Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive[J]. Materials & Design, 2014, 53: 269-274. [10] GARCIA-LODEIRO I, APARICIO-REBOLLO E, FERNÁNDEZ-JIMENEZ A, et al. Effect of calcium on the alkaline activation of aluminosilicate glass[J]. Ceramics International, 2016, 42(6): 7697-7707. [11] BERNAL S A, DE GUTIERREZ R M, PROVIS J L, et al. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags[J]. Cement and Concrete Research, 2010, 40(6): 898-907. [12] PASUPATHY K, BERNDT M, SANJAYAN J, et al. Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment[J]. Cement and Concrete Research, 2017, 100: 297-310. [13] SAHA S M, RAJASEKARAN C. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag[J]. Construction and Building Materials, 2017, 146: 615-620. [14] SARKER P K, MCBEATH S. Fire endurance of steel reinforced fly ash geopolymer concrete elements[J]. Construction and Building Materials, 2015, 90: 91-98. [15] MEHTA A, SIDDIQUE R. An overview of geopolymers derived from industrial by-products[J]. Construction and Building Materials, 2016, 127: 183-198. [16] FAHIM HUSEIEN G, MIRZA J, ISMAIL M, et al. Geopolymer mortars as sustainable repair material: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 54-74. [17] GLUKHOVSKY V D. Soil silicates. Their properties, technology and manufacturing and fields of application[D]. Kiev: Civil Engineering Institute, 1965. [18] MEHTA A, SIDDIQUE R. Sulfuric acid resistance of fly ash based geopolymer concrete[J]. Construction and Building Materials, 2017, 146: 136-143. [19] GÖRHAN G, KÜRKLÜ G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures[J]. Composites Part B: Engineering, 2014, 58: 371-377. [20] BAKHAREV T. Geopolymeric materials prepared using class F fly ash and elevated temperature curing[J]. Cement and Concrete Research, 2005, 35(6): 1224-1232. [21] 郭晓潞,施惠生.钙对粉煤灰基土聚水泥性能的影响研究[J].水泥,2011(4):11-13. GUO X L, SHI H S. Effects of calcium on performance of fly ash based geopolymeric cement[J]. Cement, 2011(4): 11-13 (in Chinese). [22] RATTANASAK U, CHINDAPRASIRT P. Influence of NaOH solution on the synthesis of fly ash geopolymer[J]. Minerals Engineering, 2009, 22(12): 1073-1078. [23] FENG D, TAN H, VAN DEVENTER J S J. Ultrasound enhanced geopolymerisation[J]. Journal of Materials Science, 2004, 39(2): 571-580. [24] PROVIS J L, LUKEY G C, VAN DEVENTER J S J. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results[J]. Chemistry of Materials, 2005, 17(12): 3075-3085. [25] PROVIS J L, VAN DEVENTER J S J. Geopolymerisation kinetics. 2. Reaction kinetic modelling[J]. Chemical Engineering Science, 2007, 62(9): 2318-2329. [26] 侯云芬,王栋民,李 俏,等.水玻璃性能对粉煤灰基矿物聚合物的影响[J].硅酸盐学报,2008,36(1):61-64+68. HOU Y F, WANG D M, LI Q, et al. Effect of water glass performance on fly ash-based geopolymers[J]. Journal of the Chinese Ceramic Society, 2008, 36(1): 61-64+68 (in Chinese). [27] 王亚超.碱激发粉煤灰基地质聚合物强化增韧及耐久性能研究[D].西安:西安建筑科技大学,2014:90-95. WANG Y C. Investigations on reinforcing, toughening and durability of alkali-activated fly ash-based geopolymer[D]. Xi’an: Xi’an University of Architecture and Technology, 2014: 90-95 (in Chinese). [28] CHEN C, GONG W L, LUTZE W, et al. Kinetics of fly ash leaching in strongly alkaline solutions[J]. Journal of Materials Science, 2011, 46(3): 590-597. [29] WANG Y C, ZHANG Y J, XU D L, et al. Influence of different curing temperatures on mechanical properties of alkali activated silica fume and fly ash based geopolymer[J]. Materials Research Innovations, 2013, 17(s1): 21-25. [30] GRAYTEE A, SANJAYAN J G, NAZARI A. Development of a high strength fly ash-based geopolymer in short time by using microwave curing[J]. Ceramics International, 2018, 44(7): 8216-8222. [31] HADI M N S, AL-AZZAWI M, YU T. Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar[J]. Construction and Building Materials, 2018, 175: 41-54. [32] ROVNANÍK P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer[J]. Construction and Building Materials, 2010, 24(7): 1176-1183. [33] 陈 晨,程 婷,贡伟亮,等.粉煤灰地聚物反应体系下的反应影响因素分析[J].材料导报,2016,30(24):118-123. CHEN C, CHENG T, GONG W L, et al. Analysis of reaction factors under fly ash based geopolymer system[J]. Materials Review, 2016, 30(24): 118-123 (in Chinese). [34] ZHUANG X Y, CHEN L, KOMARNENI S, et al. Fly ash-based geopolymer: clean production, properties and applications[J]. Journal of Cleaner Production, 2016, 125: 253-267. [35] HELMY A I I. Intermittent curing of fly ash geopolymer mortar[J]. Construction and Building Materials, 2016, 110: 54-64. [36] SOMNA K, JATURAPITAKKUL C, KAJITVICHYANUKUL P, et al. NaOH-activated ground fly ash geopolymer cured at ambient temperature[J]. Fuel, 2011, 90(6): 2118-2124. [37] ZHANG M, ZHAO M X, ZHANG G P, et al. Calcium-free geopolymer as a stabilizer for sulfate-rich soils[J]. Applied Clay Science, 2015, 108: 199-207. [38] GARCIA-LODEIRO I, PALOMO A, FERNÁNDEZ-JIMÉNEZ A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O[J]. Cement and Concrete Research, 2011, 41(9): 923-931. [39] XU H, VAN DEVENTER J S J. Geopolymerisation of multiple minerals[J]. Minerals Engineering, 2002, 15(12): 1131-1139. [40] LEE W K W, VAN DEVENTER J S J. Structural reorganisation of class F fly ash in alkaline silicate solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211(1): 49-66. [41] YIP C K, LUKEY G C, VAN DEVENTER J S J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation[J]. Cement and Concrete Research, 2005, 35(9): 1688-1697. [42] BUCHWALD A, HILBIG H, KAPS C. Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition[J]. Journal of Materials Science, 2007, 42(9): 3024-3032. [43] PROVIS J L, ROSE V, BERNAL S A, et al. High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash[J]. Langmuir, 2009, 25(19): 11897-11904. [44] DIAZ E I, ALLOUCHE E N, EKLUND S. Factors affecting the suitability of fly ash as source material for geopolymers[J]. Fuel, 2010, 89(5): 992-996. [45] OH J E, MONTEIRO P J M, JUN S S, et al. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers[J]. Cement and Concrete Research, 2010, 40(2): 189-196. [46] HUSEIEN G F, MIRZA J, ISMAIL M, et al. Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash[J]. Construction and Building Materials, 2016, 125: 1229-1240. [47] DUAN P, YAN C J, ZHOU W. A novel water permeable geopolymer with high strength and high permeability coefficient derived from fly ash, slag and metakaolin[J]. Advanced Powder Technology, 2017, 28(5): 1430-1434. [48] RAFEET A, VINAI R, SOUTSOS M, et al. Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs)[J]. Cement and Concrete Research, 2019, 122: 118-135. [49] ZHAO X H, LIU C Y, ZUO L M, et al. Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers[J]. Cement and Concrete Composites, 2019, 103: 279-292. [50] ZHAO X H, LIU C Y, WANG L, et al. Physical and mechanical properties and micro characteristics of fly ash-based geopolymers incorporating soda residue[J]. Cement and Concrete Composites, 2019, 98: 125-136. [51] ZHAO X H, LIU C Y, ZUO L M, et al. Synthesis and characterization of fly ash geopolymer paste for goaf backfill: reuse of soda residue[J]. Journal of Cleaner Production, 2020, 260: 121045. [52] ZHAO X H, LIU C Y, ZUO L M, et al. Preparation and characterization of press-formed fly ash cement incorporating soda residue[J]. Materials Letters, 2020, 259: 126852. [53] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [54] XU H, VAN DEVENTER J S J. The geopolymerization of alumino-silicate minerals[J]. International Journal of Mineral Processing, 2000, 59: 247-266. [55] FANG Y, KAYALI O. The fate of water in fly ash-based geopolymers[J]. Construction and Building Materials, 2013, 39: 89-94. [56] 马鸿文,杨 静,任玉峰,等.矿物聚合材料:研究现状与发展前景[J].地学前缘,2002,9(4):397-407. MA H W, YANG J, REN Y F, et al. Mineral polymer: current developments and prospects[J]. Earth Science Frontiers, 2002, 9(4): 397-407 (in Chinese). [57] 赵献辉,刘春原,刘宇飞,等.碱渣-粉煤灰基新型注浆材料固化机理试验研究[J].硅酸盐通报,2017,36(4):1417-1423. ZHAO X H, LIU C Y, LIU Y F, et al. Experimental research on solidified mechanism of new soda residue-fly ash-based grouting materials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1417-1423 (in Chinese). [58] 赵献辉,刘春原,左丽明,等.采空区充填新型浆液固化机理与影响因素研究[J].长江科学院院报,2018,35(8):72-77. ZHAO X H, LIU C Y, ZUO L M, et al. New grouting slurry for filling goaf: solidification mechanism and influential factors[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(8): 72-77 (in Chinese). [59] 张晓晓.碱渣土路用性能研究与微观结构分析[D].天津:河北工业大学,2015:38-54. ZHANG X X. Research of soda residue performance in haighway and microstructure characteristics[D]. Tianjin: Hebei University of Technology, 2015: 38-54 (in Chinese). [60] 赵献辉,刘春原,王文静,等.路堤填垫用碱渣拌合土物理力学性能试验研究[J].硅酸盐通报,2017,36(4):1406-1411+1423. ZHAO X H, LIU C Y, WANG W J, et al. Experimental research on physical and mechanical properties of soda residue mixing soils used for filling embankment[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1406-1411+1423 (in Chinese). [61] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. |