硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (3): 858-866.
彭玉清, 郭荣鑫, 林志伟, 张敏
收稿日期:
2020-11-19
修回日期:
2020-12-25
出版日期:
2021-03-15
发布日期:
2021-04-13
通讯作者:
林志伟,博士,实验师。E-mail:lzw@kust.edu.cn
作者简介:
彭玉清(1995—),女,硕士研究生。主要从事粉煤灰地聚合物等相关研究。E-mail:1765486062@qq.com
基金资助:
PENG Yuqing, GUO Rongxin, LIN Zhiwei, ZHANG Min
Received:
2020-11-19
Revised:
2020-12-25
Online:
2021-03-15
Published:
2021-04-13
摘要: 粉煤灰地聚合物是以粉煤灰为硅铝质原料制备的,具有强度高、耐高温、耐腐蚀、有效固封金属离子等优点。但它固有的脆性以及需高温养护才能快速获得高强度的特点限制了其运用范围,而以纤维作为增强材料不仅可以提高粉煤灰地聚合物的强度,还可以改善其延性和韧性。本文主要从粉煤灰原料特性、碱激发剂、养护制度和增强材料四方面入手,重点阐述了粉煤灰粒径和化学组成,碱激发剂的种类、用量和模数,升温养护时间和初期养护温度对抗压强度的影响,以及纤维对粉煤灰地聚合物抗压强度和弯曲性能的影响。最后,根据现有的研究成果,对四种影响因素分别是如何影响粉煤灰地聚合物力学性能进行总结。
中图分类号:
彭玉清, 郭荣鑫, 林志伟, 张敏. 粉煤灰地聚合物力学性能影响因素研究综述[J]. 硅酸盐通报, 2021, 40(3): 858-866.
PENG Yuqing, GUO Rongxin, LIN Zhiwei, ZHANG Min. Review on Influencing Factors of Mechanical Properties of Fly Ash Geopolymer[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 858-866.
[1] 石喜军.水泥行业功能拓展环境影响评价方法研究[D].北京:北京理工大学,2014. SHI X J. The study of environmental impact assessment in cement industry function expansion[D]. Beijing: Beijing Institute of Technology, 2014 (in Chinese). [2] 刘书秀.我国水泥行业环境成本核算研究[D].南昌:华东交通大学,2016. LIU S X. China’s cement industry environmental cost analysis[D]. Nanchang: East China Jiaotong University, 2016 (in Chinese). [3] PAN Z, TAO Z, CAO Y F, et al. Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature[J]. Cement and Concrete Composites, 2018, 86: 9-18. [4] 仇秀梅,刘亚东,严春杰,等.粉煤灰基地质聚合物固化Pb2+及其高温稳定性研究[J].硅酸盐通报,2019,38(7):2281-2287+2294. QIU X M, LIU Y D, YAN C J, et al. Research on immobilization of Pb2+ using fly ash-based geopolymer and its thermostability[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2281-2287+2294 (in Chinese). [5] OHNO M, LI V C. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites[J]. Construction and Building Materials, 2014, 57: 163-168. [6] PALOMO A, KRIVENKO P, GARCIA-LODEIRO I, et al. A review on alkaline activation: new analytical perspectives[J]. Materiales De Construcción, 2014, 64(315): e022. [7] WINNEFELD F, LEEMANN A, LUCUK M, et al. Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials[J]. Construction and Building Materials, 2010, 24(6): 1086-1093. [8] ANTONI, WIJAYA S W, HARDJITO D. Compressive strength of geopolymer based on the fly ash variation[J]. Materials Science Forum, 2016, 841: 98-103. [9] SOUTSOS M, BOYLE A P, VINAI R, et al. Factors influencing the compressive strength of fly ash based geopolymers[J]. Construction and Building Materials, 2016, 110: 355-368. [10] RICKARD W D A, WILLIAMS R, TEMUUJIN J, et al. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications[J]. Materials Science and Engineering: A, 2011, 528(9): 3390-3397. [11] ASSI L N, EDDIE DEAVER E, ZIEHL P. Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete[J]. Construction and Building Materials, 2018, 167: 372-380. [12] GUNASEKARA C, LAW D W, SETUNGE S, et al. Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers[J]. Construction and Building Materials, 2015, 95: 592-599. [13] 王顺风,马 雪,杜 浪,等.粉煤灰粒径对地质聚合物孔结构及性能的影响[J].非金属矿,2017,40(5):5-8. WANG S F, MA X, DU L, et al. Effect of particle size of fly ash on pore structure and properties of geopolymers[J]. Non-Metallic Mines, 2017, 40(5): 5-8 (in Chinese). [14] CHINDAPRASIRT P, CHAREERAT T, HATANAKA S, et al. High-strength geopolymer using fine high-calcium fly ash[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 264-270. [15] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. [16] 郭晓潞,施惠生.粉煤灰地聚合物溶出聚合机理及其性能研究[J].非金属矿,2011,34(4):9-11+75. GUO X L, SHI H S. Dissolution and geopolymerization mechanism and performances of fly ash geopolymer[J]. Non-Metallic Mines, 2011, 34(4): 9-11+75 (in Chinese). [17] LEE B, KIM G, KIM R, et al. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash[J]. Construction and Building Materials, 2017, 151: 512-519. [18] GUNASEKARA C, LAW D W, SETUNGE S. Effect of composition of fly ash on compressive strength of fly ash based geopolymer mortar[C]. 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), 2014. [19] CHINDAPRASIRT P, SILVA P, SAGOE-CRENTSIL K, et al. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems[J]. Journal of Materials Science, 2012, 47(12): 4876-4883. [20] ANTONI, WIJAYA S W, HARDJITO D. Factors affecting the setting time of fly ash-based geopolymer[J]. Materials Science Forum, 2016, 841: 90-97. [21] LEE W K W, VAN DEVENTER J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements[J]. Cement and Concrete Research, 2002, 32(4): 577-584. [22] ALONSO S, PALOMO A. Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures[J]. Cement and Concrete Research, 2001, 31(1): 25-30. [23] KOMLJENOVIC' M, BAAREVIC' Z, BRADIC' V. Mechanical and microstructural properties of alkali-activated fly ash geopolymers[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 35-42. [24] 王亚超.碱激发粉煤灰基地质聚合物强化增韧及耐久性能研究[D].西安:西安建筑科技大学,2014. WANG Y C. Investigations on reinforcing, toughening and durability of alkali-activated fly ash-based geopolymer[D]. Xi’an: Xi’an University of Architecture and Technology, 2014 (in Chinese). [25] NEMATOLLAHI B, SANJAYAN J, SHAIKH F U A. Comparative deflection hardening behavior of short fiber reinforced geopolymer composites[J]. Construction and Building Materials, 2014, 70: 54-64. [26] VAN JAARSVELD J G S, VAN DEVENTER J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3932-3941. [27] NIKOLIC' I, ZEJAK R, JANKOVI-ASTVAN I, et al. Influence of alkali cation on the mechanical properties and durability of fly ash based geopolymers[J]. Acta Chimica Slovenica, 2013, 60(3): 636-643. [28] RATTANASAK U, CHINDAPRASIRT P. Influence of NaOH solution on the synthesis of fly ash geopolymer[J]. Minerals Engineering, 2009, 22(12): 1073-1078. [29] 孙庆巍,马驰伟,张旭冉.粉煤灰地聚物复合胶凝材料制备与性能研究[J].非金属矿,2017,40(1):26-29. SUN Q W, MA C W, ZHANG X R. Preparation and properties of fly ash geopolymer compound cementitious materials[J]. Non-Metallic Mines, 2017, 40(1): 26-29 (in Chinese). [30] KEARSLEY E P, KOVTUN M, SHEKHOVTSOVA J. Effect of activator dosage, water-to-binder-solids ratio, temperature and duration of elevated temperature curing on the compressive strength of alkali-activated fly ash cement pastes[J]. Journal of the South African Institution of Civil Engineers, 2019, 56(3): 44-52. [31] 黄 科,马玉玮,郭奕群,等.碱激发粉煤灰/矿渣复合体系的性能研究[J].硅酸盐通报,2015,34(10):2769-2774. HUANG K, MA Y W, GUO Y Q, et al. Properties of alkali-activated fly ash/slag composite system[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(10): 2769-2774 (in Chinese). [32] AZZAHRAN ABDULLAH S F, YUN-MING L, AL BAKRI M M, et al. Effect of alkali concentration on fly ash geopolymers[J]. IOP Conference Series: Materials Science and Engineering, 2018, 343: 012013. [33] CHITHAMBARAM S J, KUMAR S, PRASAD M M, et al. Effect of parameters on the compressive strength of fly ash based geopolymer concrete[J]. Structural Concrete, 2018, 19(4): 1202-1209. [34] PANIAS D, GIANNOPOULOU I P, PERRAKI T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301(1/2/3): 246-254. [35] MORSY M S, ALSAYED S H, AL-SALLOUM Y, et al. Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder[J]. Arabian Journal for Science and Engineering, 2014, 39(6): 4333-4339. [36] 杨立荣,王春梅,封孝信,等.粉煤灰/矿渣基地聚合物的制备及固化机理研究[J].武汉理工大学学报,2009,31(7):115-119. YANG L R, WANG C M, FENG X X, et al. Preparation and consolidation mechanism of fly ash-based geopolymer incorporating slag[J]. Journal of Wuhan University of Technology, 2009, 31(7): 115-119 (in Chinese). [37] 宋学锋,朱娟娟.粉煤灰-矿渣复合基地质聚合物力学性能的影响因素[J].西安建筑科技大学学报(自然科学版),2016,48(1):128-132. SONG X F, ZHU J J. The factors affecting the mechanical properties of fly ash and slag based geopolymer[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2016, 48(1): 128-132 (in Chinese). [38] LEONG H Y, ONG D E L, SANJAYAN J G, et al. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer[J]. Construction and Building Materials, 2016, 106: 500-511. [39] 何静涛.粉煤灰基地聚合物高强砂浆组成设计与性能研究[D].长沙:长沙理工大学,2018. HE J T. Study on composition design and performance of fly ash-based geopolymer high-strength mortar[D]. Changsha: Changsha University of Science & Technology, 2018 (in Chinese). [40] 徐 庆,李 秋,陈 伟,等.碱激发剂模数对地质聚合物透水混凝土的性能影响研究[J].硅酸盐通报,2018,37(11):3575-3580+3586. XU Q, LI Q, CHEN W, et al. Effect of modulus of alkali-activator on the properties of GGBS-based geopolymer pervious concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3575-3580+3586 (in Chinese). [41] JOSEPH B, MATHEW G. Influence of aggregate content on the behavior of fly ash based geopolymer concrete[J]. Scientia Iranica, 2012, 19(5): 1188-1194. [42] 尹 明,白洪涛,周 吕.粉煤灰地质聚合物混凝土的强度特性[J].硅酸盐通报,2014,33(10):2723-2727. YIN M, BAI H T, ZHOU L. Strength characteristic of fly ash based geopolymer concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2723-2727 (in Chinese). [43] 饶绍建,王克俭.高温短期养护对低钙粉煤灰地质聚合物性能的影响[J].材料导报,2011,25(s1):477-479. RAO S J, WANG K J. Effects of short-term curing at elevated temperature on the properties of low-calcium fly ash-based geopolymer[J]. Materials Review, 2011, 25(s1): 477-479 (in Chinese). [44] WANG J J, XIE J H, WANG C H, et al. Study on the optimum initial curing condition for fly ash and GGBS based geopolymer recycled aggregate concrete[J]. Construction and Building Materials, 2020, 247: 118540. [45] HUSEIEN G F, MIRZA J, ISMAIL M, et al. Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash[J]. Construction and Building Materials, 2016, 125: 1229-1240. [46] ZHANG Y Y, XIAO R, JIANG X, et al. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers[J]. Journal of Cleaner Production, 2020, 273: 122970. [47] NOUSHINI A, BABAEE M, CASTEL A. Suitability of heat-cured low-calcium fly ash-based geopolymer concrete for precast applications[J]. Magazine of Concrete Research, 2016, 68(4): 163-177. [48] 谢子令,李 显.养护温度及时间对粉煤灰基地质聚合物混凝土强度发展的影响[J].混凝土,2014(6):55-58. XIE Z L, LI X. Effect of curing temperature and curing time on compressive strength of fly ash geopolymer concrete[J]. Concrete, 2014(6): 55-58 (in Chinese). [49] YE X H, XU J Y. Effects of curing conditions on properties of fly ash-based geopolymer concrete[C]//Proceedings of the 2015 International Conference on Material Science and Applications. Paris, France: Atlantis Press, 2015. [50] HASSAN A, ARIF M, SHARIQ M. Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete[J]. SN Applied Sciences, 2019, 1(12): 1-9. [51] 丁二宝,曹春娥,胡海泉,等.养护制度对粉煤灰基地质聚合物强度影响的研究[J].硅酸盐通报,2019,38(4):1115-1120+1127. DING E B, CAO C E, HU H Q, et al. Influence of curing schedules on the strength of fly ash-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1115-1120+1127(in Chinese). [52] 范飞林,许金余,白二雷,等.纤维对地聚合物混凝土增强效应的试验研究[J].新型建筑材料,2010,37(10):77-79+82. FAN F L, XU J Y, BAI E L, et al. Experimental study on strengthening effects of fiber in geopolymeric concrete[J]. New Building Materials, 2010, 37(10): 77-79+82 (in Chinese). [53] 黄彩菊.纤维对地聚合物抗压强度的影响及机理分析[D].杭州:浙江工业大学,2011. HUANG C J. Compressive strengthes and microstructural characteristics of fiber reinforced geopolymer[D]. Hangzhou: Zhejiang University of Technology, 2011 (in Chinese). [54] 宋学锋,王 骏,王 艳.纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性[J].材料导报,2017,31(22):121-124+145. SONG X F, WANG J, WANG Y. Flexural strength and flexural toughness of fiber/hybrid fibers and slag-geopolymers composites[J]. Materials Review, 2017, 31(22): 121-124+145 (in Chinese). [55] XU F, DENG X, PENG C, et al. Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites[J]. Construction and Building Materials, 2017, 150: 179-189. [56] AL-MASHHADANI M M, CANPOLAT O, AYGÖRMEZ Y, et al. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites[J]. Construction and Building Materials, 2018, 167: 505-513. [57] RANJBAR N, MEHRALI M, MEHRALI M, et al. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber[J]. Construction and Building Materials, 2016, 112: 629-638. [58] GUO X L, PAN X J. Mechanical properties and mechanisms of fiber reinforced fly ash-steel slag based geopolymer mortar[J]. Construction and Building Materials, 2018, 179: 633-641. [59] NOUSHINI A, HASTINGS M, CASTEL A, et al. Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete[J]. Construction and Building Materials, 2018, 186: 454-475. [60] ZHANG Z H, YAO X, ZHU H J, et al. Preparation and mechanical properties of polypropylene fiber reinforced calcined Kaolin-fly ash based geopolymer[J]. Journal of Central South University of Technology, 2009, 16(1): 49-52. [61] PAYAKANITI P, PINITSOONTHORN S, THONGBAI P, et al. Effects of carbon fiber on mechanical and electrical properties of fly ash geopolymer composite[J]. Materials Today: Proceedings, 2018, 5(6): 14017-14025. |
[1] | 张继旭, 王文广, 李金权, 韩杰. 碳纳米管水泥基复合材料的研究进展[J]. 硅酸盐通报, 2021, 40(3): 714-722. |
[2] | 吴一晨, 郭荣鑫, 夏海廷, 索玉霞, 未立煌, 陈佳敏. 不同分散剂对复掺GO/CNFs水泥基复合材料力学和导电性能的影响[J]. 硅酸盐通报, 2021, 40(3): 731-740. |
[3] | 王旭昊, 甘珑, 余海洋, 李程, 高新民, 张亚刚, 李联伟, 边庆华. 石粉含量对C45凝灰岩机制砂混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(3): 775-783. |
[4] | 兰波, 何智海, 胡海波, WOLDERUFAEL Yirgalemfissiha, 杨莹, 韩旭东. 沸石粉取代部分硅灰的超高性能混凝土力学性能研究[J]. 硅酸盐通报, 2021, 40(3): 792-800. |
[5] | 徐存东, 黄嵩, 李洪飞, 李振, 连海东, 李智睿. 盐冻作用下玄武岩纤维混凝土力学性能损伤研究[J]. 硅酸盐通报, 2021, 40(3): 812-820. |
[6] | 薛文, 王腾, 程文杰, 沈鸿儒, 李乙, 陈江瑛, 朱瑶宏. 低温冻融循环对陶粒混凝土动态力学性能的影响[J]. 硅酸盐通报, 2021, 40(3): 821-828. |
[7] | 赵献辉, 王浩宇, 周博宇, 高涵. 粉煤灰基地聚物的性能影响因素及其凝胶产物研究进展[J]. 硅酸盐通报, 2021, 40(3): 867-876. |
[8] | 胡振文, 郭远新, 林祥玲, 李秋义, 郑世东. 高炭粉煤灰浮选脱炭试验研究[J]. 硅酸盐通报, 2021, 40(3): 907-913. |
[9] | 刘洋, 吴锦绣, 封春甫, 杨圣玮, 冯福山, 王觅堂. 富镁镍渣-粉煤灰基地质聚合物的制备与性能表征[J]. 硅酸盐通报, 2021, 40(3): 921-928. |
[10] | 李晓光, 侯鑫鑫, 梁保真, 王攀奇, Saddam Ali. 铁尾矿陶粒混凝土的制备与性能分析[J]. 硅酸盐通报, 2021, 40(3): 929-935. |
[11] | 谢子茜, 刘桂宾, 张天宇, 李秋义, 王亮. 钾基碱性电解水对粉煤灰混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(3): 943-950. |
[12] | 王燕峰, 刘松辉, 韩康, 张莉, 管学茂. 超细碳酸钙对硫铝酸盐水泥基双液注浆材料性能的影响[J]. 硅酸盐通报, 2021, 40(2): 368-376. |
[13] | 周建伟, 余保英, 孔亚宁, 杨文, 程宝军. 热处理对聚合物改性纤维增韧水泥基复合材料物理力学性能的影响[J]. 硅酸盐通报, 2021, 40(2): 392-400. |
[14] | 杨成林, 徐迎, 洪建, 孔新立. 强动载作用下海水海砂混凝土应用研究进展[J]. 硅酸盐通报, 2021, 40(2): 415-422. |
[15] | 王艺霖, 王顺尧, 刘巧玲. 活性掺合料对混凝土抗碳化性能影响的研究[J]. 硅酸盐通报, 2021, 40(2): 439-446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||