硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 81-91.DOI: 10.16552/j.cnki.issn1001-1625.2025.0800
金清平1(
), 杨振远1, 梁颖强1, 刘运蝶2, 宋仕娥1
收稿日期:2025-08-06
修订日期:2025-10-09
出版日期:2026-01-20
发布日期:2026-02-10
作者简介:金清平(1975—),男,博士,教授。主要从事FRP土木工程结构与性能研究。E-mail:jinqingping@wust.edu.cn
JIN Qingping1(
), YANG Zhenyuan1, LIANG Yingqiang1, LIU Yundie2, SONG Shie1
Received:2025-08-06
Revised:2025-10-09
Published:2026-01-20
Online:2026-02-10
摘要:
在沿海及海洋工程中,采用海砂代替河砂可减少河砂因跨区域运输而产生的成本及保护陆地生态,配合玻璃纤维增强塑料(GFRP)筋替代钢筋可解决海砂中氯离子腐蚀的问题。针对海洋上桥梁中常见的盖梁等深受弯构件,制作了30个GFRP筋-海砂混凝土深受弯构件并测试其在氯盐环境中浸泡不同时间后的承载性能,包括破坏模式、挠度、裂缝、极限承载力等。结果表明:氯盐浸泡会导致GFRP筋-海砂混凝土深受弯构件破坏模式从混凝土压碎破坏变为剪切破坏;随着浸泡时间的增加,构件开裂荷载增加,极限承载力下降,裂缝数目逐渐减少,最大挠度值增加。根据测试结果,采用GFRP筋折减系数指标修正了现有规范中钢筋混凝土深受弯构件承载力计算公式,修正公式能够较好地预测GFRP筋-海砂混凝土深受弯构件在氯盐环境浸泡后的极限承载力。
中图分类号:
金清平, 杨振远, 梁颖强, 刘运蝶, 宋仕娥. 氯盐环境下GFRP筋-海砂混凝土深受弯构件承载性能研究[J]. 硅酸盐通报, 2026, 45(1): 81-91.
JIN Qingping, YANG Zhenyuan, LIANG Yingqiang, LIU Yundie, SONG Shie. Load-Bearing Capacity of GFRP Bar Sea Sand Concrete Deep Flexural Members in Chloride Environment[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 81-91.
| Design level | Water-cement ratio | Cement/(kg·m-3) | Water/(kg·m-3) | Sand/(kg·m-3) | Gravel/(kg·m-3) |
|---|---|---|---|---|---|
| C40 | 0.4 | 537.5 | 215 | 494.25 | 1 153.25 |
表1 海砂混凝土配合比
Table 1 Mix proportion of sea sand concrete
| Design level | Water-cement ratio | Cement/(kg·m-3) | Water/(kg·m-3) | Sand/(kg·m-3) | Gravel/(kg·m-3) |
|---|---|---|---|---|---|
| C40 | 0.4 | 537.5 | 215 | 494.25 | 1 153.25 |
| Design strength of concrete | Compressive strength/MPa | Flexural strength/MPa | ||||
|---|---|---|---|---|---|---|
| C40 | 32.8 | 41.8 | 40.6 | 2.73 | 3.08 | 3.21 |
表2 海砂混凝土力学性能试验结果
Table 2 Results of mechanical properties test of sea sand concrete
| Design strength of concrete | Compressive strength/MPa | Flexural strength/MPa | ||||
|---|---|---|---|---|---|---|
| C40 | 32.8 | 41.8 | 40.6 | 2.73 | 3.08 | 3.21 |
| Material | Diameter/mm | Tensile strength/MPa | Elastic modulus/GPa |
|---|---|---|---|
| GFRP bar | 6 | 1 042.93 | 59.7 |
表3 GFRP筋力学性能参数
Table 3 Mechanical properties parameters of GFRP bar
| Material | Diameter/mm | Tensile strength/MPa | Elastic modulus/GPa |
|---|---|---|---|
| GFRP bar | 6 | 1 042.93 | 59.7 |
| [1] | 侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016, 31(12): 1326-1331. |
| HOU B R, ZHANG D, WANG P. Marine corrosion and protection: current status and prospect[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1326-1331 (in Chinese). | |
| [2] |
DONG Z Q, WU G, ZHAO X L, et al. The durability of seawater sea-sand concrete beams reinforced with metal bars or non-metal bars in the ocean environment[J]. Advances in Structural Engineering, 2020, 23(2): 334-347.
DOI URL |
| [3] | 侯卫星, 秦 磊, 郭盼盼, 等. 海水-海砂混凝土研究进展[J]. 济南大学学报(自然科学版), 2024, 38(2): 184-193. |
| HOU W X, QIN L, GUO P P, et al. Research progress on seawater-sea sand concrete[J]. Journal of University of Jinan (Science and Technology), 2024, 38(2): 184-193 (in Chinese). | |
| [4] |
CHEN Z P, LI S X, ZHOU J, et al. Flexural behavior of GFRP bars reinforced seawater sea sand concrete beams exposed to marine environment: experimental and numerical study[J]. Construction and Building Materials, 2022, 349: 128784.
DOI URL |
| [5] | 杨树桐, 孙忠科, 蒋济同, 等. 海洋骨料混凝土材料与结构性能研究进展[J]. 中国海洋大学学报(自然科学版), 2023, 53(10): 11-19. |
| YANG S T, SUN Z K, JIANG J T, et al. A review of material and structural properties of marine aggregate concrete[J]. Periodical of Ocean University of China, 2023, 53(10): 11-19 (in Chinese). | |
| [6] |
LIAO J J, ZENG J J, BAI Y L, et al. Bond strength of GFRP bars to high strength and ultra-high strength fiber reinforced seawater sea-sand concrete (SSC)[J]. Composite Structures, 2022, 281: 115013.
DOI URL |
| [7] |
HUA Y T, YIN S P, FENG L L. Bearing behavior and serviceability evaluation of seawater sea-sand concrete beams reinforced with BFRP bars[J]. Construction and Building Materials, 2020, 243: 118294.
DOI URL |
| [8] | 孙亚楠. 海水海砂混凝土中GFRP筋劣化机制与耐蚀改性研究[D]. 青岛: 青岛理工大学, 2024. |
| SUN Y N. Study on the deterioration mechanism and corrosion resistance modification of GFRP bars in seawater sea sand concrete[D]. Qingdao: Qingdao University of Technology, 2024 (in Chinese). | |
| [9] |
XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101-1111.
DOI URL |
| [10] | 刘 伟, 谢友均, 董必钦, 等. 海砂特性及海砂混凝土力学性能的研究[J]. 硅酸盐通报, 2014, 33(1): 15-22. |
| LIU W, XIE Y J, DONG B Q, et al. Study on characteristics of dredged marine sand and the mechanical properties of concrete made with dredged marine sand[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 15-22 (in Chinese). | |
| [11] |
ZHOU H J, CHEN S Y, DU Y L, et al. Field test of a reinforced concrete bridge under marine environmental corrosion[J]. Engineering Failure Analysis, 2020, 115: 104669.
DOI URL |
| [12] |
DONG Z Q, WU G, ZHAO X L, et al. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars[J]. Construction and Building Materials, 2018, 192: 671-682.
DOI URL |
| [13] |
REN F M, LIU T Y, CHEN G M, et al. Flexural behavior and modelling of FRP-bar reinforced seawater sea sand concrete beams exposed to subtropical coastal environment[J]. Construction and Building Materials, 2021, 309: 125071.
DOI URL |
| [14] | EL-SAYED T A, ALGASH Y A. Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars[J]. Case Studies in Construction Materials, 2021, 15: e00604. |
| [15] | 叶见曙. 结构设计原理[M]. 北京: 人民交通出版社, 2018. |
| YE J S. Principles of structural design[M]. Beijing: China Communications Press, 2018 (in Chinese). | |
| [16] |
BEDIWY A, MAHMOUD K, EL-SALAKAWY E. Structural behavior of FRCC layered deep beams reinforced with GFRP headed-end bars[J]. Engineering Structures, 2021, 243: 112648.
DOI URL |
| [17] | AL-GASHAM T S, MHALHAL J M, ABID S R. Flexural behavior of laced reinforced concrete moderately deep beams[J]. Case Studies in Construction Materials, 2020, 13: e00363. |
| [18] | ARABASI S, EL-MAADDAWY T. Reinforcing of discontinuity regions in concrete deep beams with GFRP composite bars[J]. Composites Part C: Open Access, 2020, 3: 100064. |
| [19] |
PAN D, YASEEN S A, CHEN K Y, et al. Study of the influence of seawater and sea sand on the mechanical and microstructural properties of concrete[J]. Journal of Building Engineering, 2021, 42: 103006.
DOI URL |
| [20] |
DHONDY T, REMENNIKOV A, SHIEKH M N. Benefits of using sea sand and seawater in concrete: a comprehensive review[J]. Australian Journal of Structural Engineering, 2019, 20(4): 280-289.
DOI URL |
| [21] | 周玲珠, 万钧涛, 郑 愚, 等. GFRP筋与海水海砂高掺量粉煤灰自密实混凝土的粘结性能研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 211-219+236. |
| ZHOU L Z, WAN J T, ZHENG Y, et al. Study on bond behavior of GFRP bars and self-compacting concrete mixed with seawater sea-sand and high-volume fly ash[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 211-219+236 (in Chinese). | |
| [22] |
WANG Z K, ZHAO X L, XIAN G J, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science, 2018, 138: 200-218.
DOI URL |
| [23] |
JAFARI R, ALIZADEH ELIZEI M H, ZIAEI M, et al. Investigation of residual strength of GFRP bar reinforced concrete beams with recycled materials under elevated temperature[J]. Arabian Journal for Science and Engineering, 2024, 49(10): 13801-13820.
DOI |
| [24] |
WANG Z H, XIE J H, LI J L, et al. Flexural behaviour of seawater-sea sand concrete beams reinforced with GFRP bars: effects of the reinforcement ratio, stirrup ratio, shear span ratio and prestress level[J]. Journal of Building Engineering, 2022, 54: 104566.
DOI URL |
| [25] |
ZHU W J, FRANÇOIS R, CLELAND D, et al. Failure mode transitions of corroded deep beams exposed to marine environment for long period[J]. Engineering Structures, 2015, 96: 66-77.
DOI URL |
| [26] | NASSIF M K, ERFAN A M, FADEL O T, et al. Flexural behavior of high strength concrete deep beams reinforced with GFRP bars[J]. Case Studies in Construction Materials, 2021, 15: e00613. |
| [27] | 中华人民共和国住房和城乡建设部. 混凝土结构设计标准(2024版): GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures (2024 edition): GB 50010—2010[S]. Beijing : China Building Industry Press, 2010 (in Chinese). | |
| [28] | 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standards for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Publishing House (in Chinese). | |
| [29] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2014. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration of China. Test methods for basic mechanical properties of fiber reinforced composite bars: GB/T 30022—2013[S]. Beijing: China Standards Publishing House, 2014 (in Chinese). | |
| [30] |
DUO Y Y, LIU X G, LIU Y, et al. Environmental impact on the durability of FRP reinforcing bars[J]. Journal of Building Engineering, 2021, 43: 102909.
DOI URL |
| [31] |
ARCZEWSKA P, POLAK M A, PENLIDIS A. Degradation of glass fiber reinforced polymer (GFRP) bars in concrete environment[J]. Construction and Building Materials, 2021, 293: 123451.
DOI URL |
| [32] |
RIFAI M, EL-HASSAN H, EL-MAADDAWY T, et al. Durability of basalt FRP reinforcing bars in alkaline solution and moist concrete environments[J]. Construction and Building Materials, 2020, 243: 118258.
DOI URL |
| [33] |
WANG Z K, ZHAO X L, XIAN G J, et al. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139: 467-489.
DOI URL |
| [34] | Guide test methods for fiber-reinforced polymer (FRP)composites for reinforcing or strengthening concrete and masonry structures: ACI 440.3R-12[S]. Farmington Hills, MI: American Concrete Institute, 2012. |
| [35] | 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standards for test methods of concrete structures: GB/T 50152—2012[S]. Beijing : China Building Industry Press, 2012 (in Chinese). | |
| [36] |
DONG Z Q, SUN Y, ZHU H, et al. Shear behavior of hybrid seawater sea-sand concrete short beams reinforced with BFRP reinforcements[J]. Engineering Structures, 2022, 252: 113615.
DOI URL |
| [37] |
AHMED A, GUO S C, ZHANG Z H, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials, 2020, 256: 119484.
DOI URL |
| [38] | 王鹏刚, 莫 芮, 隋晓萌, 等. 混凝土中氯盐-硫酸盐耦合侵蚀的化学-损伤-传输模型研究进展[J]. 硅酸盐学报, 2022, 50(2): 512-521. |
| WANG P G, MO R, SUI X M, et al. Chemo-damage-transport model of combined chloride-sulfate attack in concrete[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 512-521 (in Chinese). | |
| [39] | 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608—2020[S]. 北京: 中国计划出版社, 2020. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608—2020[S]. Beijing: China Planning Press, 2020 (in Chinese). |
| [1] | 凌伟诚, 柯国军, 金丹, 陈善秋, 段雄凯斌. MWCNTs/LDHs-NO2对海水海砂混凝土内钢筋的阻锈作用[J]. 硅酸盐通报, 2025, 44(7): 2487-2494. |
| [2] | 贺鑫鑫, 武鑫江, 王子龙, 王靖, 吴昊, 李德军, 王霞. 高性能掺合料对隧道喷射混凝土性能的影响及机理研究[J]. 硅酸盐通报, 2025, 44(6): 2121-2134. |
| [3] | 毕钰, 秦拥军, 罗玲, 姚子祺, 刘凤超, 阳毅恒. 混掺再生粗骨料和再生微粉混凝土的早期力学性能[J]. 硅酸盐通报, 2025, 44(2): 623-633. |
| [4] | 张维东, 汪愿, 宋鹏飞, 王亚坤, 刘倩倩, 王旭昊. 高寒区混凝土多场耦合损伤劣化机制研究进展[J]. 硅酸盐通报, 2024, 43(7): 2317-2334. |
| [5] | 徐存东, 汪志航, 陈家豪, 李准, 王海若, 徐慧. 盐-冻侵蚀环境下聚丙烯纤维混凝土的寿命预测[J]. 硅酸盐通报, 2024, 43(6): 2111-2120. |
| [6] | 郑建岚, 王雅思, 叶艳. 原状海砂对混凝土力学性能的影响[J]. 硅酸盐通报, 2024, 43(6): 2149-2156. |
| [7] | 朱和龙, 许瑞天, 梁宇涵, 梁莹, 杨倩, 陈宗平. CFRP-PVC管约束珊瑚海水海砂混凝土柱轴压性能试验研究及有限元分析[J]. 硅酸盐通报, 2024, 43(3): 891-904. |
| [8] | 徐世法, 张子谦, 毋虹亮, 郭倩芸, 马昊天, 韩昊岳. 废旧聚氨酯混凝土掺量对再生混合料路用性能的影响[J]. 硅酸盐通报, 2024, 43(3): 1162-1171. |
| [9] | 唐子祥, 杨淑雁, 高海海, 徐宁阳. 硫酸盐侵蚀和干湿、冻融循环下混凝土单轴受压损伤对比[J]. 硅酸盐通报, 2024, 43(2): 428-438. |
| [10] | 崔纪飞, 柏林, 饶平平, 康陈俊杰, 张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型[J]. 硅酸盐通报, 2024, 43(2): 439-447. |
| [11] | 胥晔, 陶俊林, 李洪祥. 冻融循环后混凝土冲击劈拉强度预测模型[J]. 硅酸盐通报, 2024, 43(2): 448-455. |
| [12] | 胡以婵, 翁贻令, 池浩, 胡雷, 彭浩, 梁健, 周富坚, 黄文胜, 解威威. 基于NSGA-II高性能混凝土配合比的多目标智能优化设计方法研究[J]. 硅酸盐通报, 2024, 43(10): 3645-3654. |
| [13] | 张宇, 蒋应军, 范江涛, 许晓平, 俞晓松. 掺建筑垃圾水泥稳定碎石力学强度增长规律与预测模型[J]. 硅酸盐通报, 2024, 43(10): 3755-3764. |
| [14] | 孔令艳, 刘树昌, 鲍玖文, 尹相振, 曹银龙, 崔祎菲. FRP筋与海水海砂混凝土界面粘结性能研究进展[J]. 硅酸盐通报, 2024, 43(1): 147-157. |
| [15] | 蒋应军, 王煜鑫, 周传荣, 李明杰, 杨明, 蒋学猛. 垂直振动成型CTB-50水泥稳定碎石抗压强度增长规律及预测模型[J]. 硅酸盐通报, 2023, 42(8): 3045-3054. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||