硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 227-236.DOI: 10.16552/j.cnki.issn1001-1625.2025.0703
收稿日期:2025-07-18
修订日期:2025-09-15
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
夏李斌,博士,副教授。E-mail:tea_xia@126.com
作者简介:薛南波(2002—),男,硕士研究生。主要从事固废资源化利用的研究。E-mail:2993640842@qq.com
XUE Nanbo1(
), CHEN Weiwei2, YAN Weijie1, XIA Libin1,3(
)
Received:2025-07-18
Revised:2025-09-15
Published:2026-01-20
Online:2026-02-10
摘要:
桥梁道路建设产生的大量废弃桩基泥浆含水率高、粒度细,直接排放易造成严重的环境污染。絮凝脱水是废弃桩基泥浆高效处置与资源化利用的关键环节。本文选用聚丙烯酰胺(PAM)类絮凝剂,针对江西某地区桥梁桩基工程废弃泥浆开展脱水性能研究,对比分析絮凝前后泥浆结构、形貌及粒度变化。结果表明:阴离子型PAM(APAM)、阳离子型PAM(CPAM)和非离子型PAM(NPAM)均在0.2%(质量分数)浓度下脱水效果最为显著,仅分别需添加3%、4%和7%(体积分数)即可使泥浆在10 s内快速絮凝脱水,含水率分别显著降低29.5%、24.3%和19.5%。其中,APAM处理效果最优,其上清液浊度在2 h后仅为20 NTU。APAM促使微小颗粒有效团聚为较大絮体,显著提升泥浆结晶度;粒度分布特征值(D10、D50、D90)均明显增大,尤以D90(由15.10 μm增至25.50 μm,增幅68.9%)最为突出。综上,APAM展现出优异的絮凝与脱水性能,在废弃桩基泥浆的环保处置中具有良好应用前景。
中图分类号:
薛南波, 陈伟伟, 晏伟杰, 夏李斌. PAM类絮凝剂对废弃桩基泥浆脱水性能的影响[J]. 硅酸盐通报, 2026, 45(1): 227-236.
XUE Nanbo, CHEN Weiwei, YAN Weijie, XIA Libin. Effects of PAM Flocculants on Dewatering Performance of Waste Pile Foundation Slurry[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 227-236.
| Element | O | Al | Si | Fe | K | Mg | Na |
|---|---|---|---|---|---|---|---|
| Mass fraction/% | 47.038 | 9.899 | 26.454 | 4.879 | 2.579 | 1.247 | 0.462 |
表1 废弃泥浆的主要元素含量
Table 1 Main element content of waste slurry
| Element | O | Al | Si | Fe | K | Mg | Na |
|---|---|---|---|---|---|---|---|
| Mass fraction/% | 47.038 | 9.899 | 26.454 | 4.879 | 2.579 | 1.247 | 0.462 |
| Composition | SiO2 | Al2O3 | Fe2O3 | K2O | MgO | Na2O |
|---|---|---|---|---|---|---|
| Mass fraction/% | 59.02 | 25.32 | 10.00 | 3.76 | 1.51 | 0.39 |
表2 废弃泥浆的主要化学成分
Table 2 Main chemical composition of waste slurry
| Composition | SiO2 | Al2O3 | Fe2O3 | K2O | MgO | Na2O |
|---|---|---|---|---|---|---|
| Mass fraction/% | 59.02 | 25.32 | 10.00 | 3.76 | 1.51 | 0.39 |
| No. | Mass fraction/% | ||
|---|---|---|---|
| APAM | CPAM | NPAM | |
| A-01 | C-01 | N-01 | 0.1 |
| A-02 | C-02 | N-02 | 0.2 |
| A-03 | C-03 | N-03 | 0.3 |
| A-04 | C-04 | N-04 | 0.4 |
表3 PAM类絮凝剂浓度
Table 3 Concentration of PAM flocculants
| No. | Mass fraction/% | ||
|---|---|---|---|
| APAM | CPAM | NPAM | |
| A-01 | C-01 | N-01 | 0.1 |
| A-02 | C-02 | N-02 | 0.2 |
| A-03 | C-03 | N-03 | 0.3 |
| A-04 | C-04 | N-04 | 0.4 |
图4 不同浓度下APAM、CPAM和NPAM絮凝剂絮凝后上清液浊度随时间的变化
Fig.4 Variations in supernatant turbidity over time after flocculation by APAM, CPAM, and NPAM flocculants at different concentrations
图10 在絮凝前后泥浆中种植黑麦草不同时间内的生长状况(左边塑料花盆为絮凝后泥浆种植土,右边为未絮凝空白对照组)
Fig.10 Growth status of ryegrass planted in flocculated and unflocculated slurry at different time (left pot contains planting soil prepared from flocculated slurry, right pot represents unflocculated blank control group)
| [1] | 楼明浩, 汪炎法, 孔奥. 桩基施工泥浆固化处理新技术在某工程中的应用[J]. 施工技术, 2015, 44(12): 97-100. |
| LOU M H, WANG Y F, KONG A. Engineering practice of improved sludge dewatering processing technology for piles construction in a project[J]. Construction Technology, 2015, 44(12): 97-100 (in Chinese). | |
| [2] | 刘泽, 李长利, 廖鹏, 等. 桩基泥浆固化土工程特性试验研究与路用可行性分析[J]. 湖南交通科技, 2021, 47(2): 70-73. |
| LIU Z, LI C L, LIAO P, et al. Study on engineering characteristics and feasibility analysis of pile foundation mud-solidified soil[J]. Hunan Communication Science and Technology, 2021, 47(2): 70-73 (in Chinese). | |
| [3] | 王文丽. 废泥浆固化技术在公路工程的应用[J]. 交通世界, 2021(20): 67-68. |
| WANG W L. Application of waste mud solidification technology in highway engineering[J]. Transportation World, 2021(20): 67-68 (in Chinese). | |
| [4] | 刘明继. 桩基泥浆固化处理技术在房建工程中的应用[J]. 云南水力发电, 2022, 38(10): 305-308. |
| LIU M J. Application of pile foundation mud solidification treatment technology in building engineering[J]. Yunnan Water Power, 2022, 38(10): 305-308 (in Chinese). | |
| [5] | 叶必军. 桩基施工泥浆固化处理新技术的应用研究[J]. 当代化工, 2024, 53(2): 346-349+434. |
| YE B J. Application research on new technology of mud solidification treatment in pile foundation construction[J]. Contemporary Chemical Industry, 2024, 53(2): 346-349+434 (in Chinese). | |
| [6] | 陈祎, 刘明昊, 赵智慧. 钻孔灌注桩废弃泥浆快速絮凝脱水技术与机理研究[J]. 建筑施工, 2025, 47(1): 6-11. |
| CHEN Y, LIU M H, ZHAO Z H. Study on rapid flocculation and dehydration technique and mechanism of waste mud from bored piles[J]. Building Construction, 2025, 47(1): 6-11 (in Chinese). | |
| [7] | 闫志谋. 桩基施工泥浆固化处理新技术应用分析[J]. 冶金与材料, 2021, 13(5): 125-126. |
| YAN Z M. Application analysis of new technology for solidification treatment of mud in pile foundation construction[J]. Metallurgy and Materials, 2021, 13(5): 125-126 (in Chinese). | |
| [8] | 马娟, 屈撑囤, 李珊, 等. 废弃泥浆无害化处理的研究与展望[J]. 辽宁化工, 2014, 43(9): 1190-1191+1212. |
| MA J, QU C T, LI S, et al. Research and prospect of waste mud harmless treatment[J]. Liaoning Chemical Industry, 2014, 43(9): 1190-1191+1212 (in Chinese). | |
| [9] | 邓慧萍, 梁超, 许建华. PAM在给水厂排泥水处理中的调质作用及机理探讨[J]. 给水排水, 2004, 40(6): 31-33. |
| DENG H P, LIANG C, XU J H. Discussion on conditioning function and mechanism of PAM in sludge water treatment of water supply plant[J]. Water & Wastewater Engineering, 2004, 40(6): 31-33 (in Chinese). | |
| [10] | 聂容春, 徐初阳, 郭立颖. 不同类型聚丙烯酰胺对煤泥水的絮凝作用[J]. 煤炭科学技术, 2005, 33(2): 62-64. |
| NIE R C, XU C Y, GUO L Y. Flocculating functions of different polyacrylamide to coal slurry[J]. Coal Science and Technology, 2005, 33(2): 62-64 (in Chinese). | |
| [11] |
HE W P, LUO J C, WU Y J, et al. Differently charged polyacrylamides (PAMs) significantly affect adsorption affinity and associated floc growth behaviors during ballasted flocculation: performance and mechanism[J]. Separation and Purification Technology, 2024, 329: 125279.
DOI URL |
| [12] | 赵媛媛. 阳离子型聚丙烯酰胺的制备及絮凝性能研究[D]. 南宁: 广西大学, 2022. |
| ZHAO Y Y. Preparation and flocculation performance of cationic polyacrylamide[D]. Nanning: Guangxi University, 2022 (in Chinese). | |
| [13] |
XIE H Y, GAO L K, HE S M, et al. Flocculation and sedimentation of bauxite flotation tailings[J]. Applied Mechanics and Materials, 2012, 260-261: 1179-1182.
DOI URL |
| [14] | 高宇, 周普玉, 杨霞, 等. 絮凝剂对工程废弃泥浆脱水性能的影响[J]. 环境工程学报, 2017, 11(10): 5597-5602. |
| GAO Y, ZHOU P Y, YANG X, et al. Effect of flocculants on dehydration properties of construction waste slurry[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5597-5602 (in Chinese). | |
| [15] | 高健磊, 闫怡新, 吴建平, 等. 城市污水处理厂污泥脱水性能研究[J]. 环境科学与技术, 2008, 31(2): 108-111+131. |
| GAO J L, YAN Y X, WU J P, et al. Sludge dewatering property in municipal wastewater treatment plant[J]. Environmental Science & Technology, 2008, 31(2): 108-111+131 (in Chinese). | |
| [16] | 李春林, 吴言坤, 吕焕杰, 等. PAM类有机絮凝剂对高黏粒含量废弃泥浆脱水性能影响研究[J]. 隧道建设(中英文), 2022, 42(2): 260-267. |
| LI C L, WU Y K, LYU H J, et al. Influence of polyacrylamide organic flocculant on dewatering performance of waste slurry with a high content of clay particles[J]. Tunnel Construction, 2022, 42(2): 260-267 (in Chinese). | |
| [17] | 陈鸿锦, 刘爽. 钻孔桩废弃泥浆絮凝—电渗试验研究[J]. 交通节能与环保, 2024, 20(1): 183-190. |
| CHEN H J, LIU S. Experimental study on flocculation and electroosmosis of borehole pile waste mud[J]. Transport Energy Conservation & Environmental Protection, 2024, 20(1): 183-190 (in Chinese). | |
| [18] |
BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11): 2301-2324.
PMID |
| [19] | 李悦, 李俊才, 汪效祖, 等. 废弃钻孔泥浆快速泥水分离试验研究[J]. 科学技术与工程, 2020, 20(25): 10366-10371. |
| LI Y, LI J C, WANG X Z, et al. Experimental study of rapid water separation from slurry of drilling mud[J]. Science Technology and Engineering, 2020, 20(25): 10366-10371 (in Chinese). | |
| [20] | 李冲, 吕志刚, 陈洪龄, 等. 阴离子型聚丙烯酰胺在废弃桩基泥浆处理中的应用[J]. 环境科技, 2012, 25(1): 33-37. |
| LI C, LV Z G, CHEN H L, et al. Application of anionic polyacrylamide in treating waste slurry from pile foundation engineering[J]. Environmental Science and Technology, 2012, 25(1): 33-37 (in Chinese). | |
| [21] | 王东星, 伍林峰, 唐弈锴, 等. 建筑废弃泥浆泥水分离过程与效果评价[J]. 浙江大学学报(工学版), 2020, 54(6): 1049-1057. |
| WANG D X, WU L F, TANG Y K, et al. Mud-water separation process and performance evaluation of waste slurry from construction engineering[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1049-1057 (in Chinese). | |
| [22] | 李培, 方若全, 顾斌兵, 等. 泥水盾构废弃泥浆絮凝脱水机理及影响因素分析[J]. 四川环境, 2024, 43(1): 172-180. |
| LI P, FANG R Q, GU B B, et al. Analysis of flocculation and dewatering mechanism and influence factors of waste slurry from slurry TBM[J]. Sichuan Environment, 2024, 43(1): 172-180 (in Chinese). | |
| [23] | 赵天宇, 马军, 王骑虎, 等. 环境侵蚀性桩基废弃泥浆高效脱水固化试验研究[J]. 材料导报, 2024, 38(增刊1): 303-308. |
| ZHAO T Y, MA J, WANG Q H, et al. Experimental study on efficient dehydration and solidification of waste mud from pile foundation with environmental erosion[J]. Materials Reports, 2024, 38(supplement 1): 303-308 (in Chinese). |
| [1] | 朱崟源, 朱干宇, 齐放, 李会泉, 陈艳, 李少鹏, 郭彦霞. 固废基水化硅酸钙制备及综合利用研究进展[J]. 硅酸盐通报, 2024, 43(2): 517-533. |
| [2] | 黄伟, 薛葵, 张子龙, 曹涌钢, 王佳亮, 邱文浩, 陈冬生. 铁尾矿砂的研究与应用进展[J]. 硅酸盐通报, 2024, 43(10): 3655-3665. |
| [3] | 袁波, 赵亮, 李博, 陈伟, 唐佩, 曹海琳, 郭悦. 基于亚硝酸根插层LDHs的高效水泥降铬剂研究[J]. 硅酸盐通报, 2023, 42(5): 1542-1550. |
| [4] | 赵珂萍, 李晓玉, 李瑞红, 李浩然, 杨天佐, 犹家进, 彭康. 固废源CaO基CO2捕集材料的制备与捕集性能研究进展[J]. 硅酸盐通报, 2023, 42(2): 520-530. |
| [5] | 吴泳霖, 张伟, 奠波, 陈建军. 磷石膏热分解研究现状[J]. 硅酸盐通报, 2022, 41(9): 3129-3137. |
| [6] | 方露, 黄萧. 基于铅锌冶炼渣碱激发材料固化铬渣的研究[J]. 硅酸盐通报, 2021, 40(8): 2631-2639. |
| [7] | 姚苏琴, 查文华, 刘新权, 季圣星, 何昌春, 余跃. 萍乡废弃煤矸石理化特性及热活化性能研究[J]. 硅酸盐通报, 2021, 40(7): 2280-2287. |
| [8] | 陶航宇, 陈萍, 龚亦凡, 詹静芳, 章莉. 基于砖含量的再生砖混粗骨料分类研究[J]. 硅酸盐通报, 2021, 40(3): 957-963. |
| [9] | 杨晓伟, 张爱生, 曲俊蓉, 杨柯, 许建华, 朱英. 油田污泥基高强陶粒的制备及性能优化[J]. 硅酸盐通报, 2021, 40(1): 215-222. |
| [10] | 马明亮;孙晓南;权宗刚;王科颖. 我国工业固废制备陶粒资源化利用的研究进展[J]. 硅酸盐通报, 2020, 39(8): 2492-2500. |
| [11] | 袁政成;黄法礼;王振;温家馨;易忠来;李化建;谢永江;袁静怡;李洪福. 隧道洞渣在建筑材料中的资源化综合利用研究进展[J]. 硅酸盐通报, 2020, 39(8): 2468-2475. |
| [12] | 郝彤;王帅;冷发光. 利用地铁盾构渣土制备高流态充填材料[J]. 硅酸盐通报, 2020, 39(5): 1525-1532. |
| [13] | 郝彤;王帅;李鑫箫;王春霖;毋雪梅. 利用盾构渣土制备水泥混合材的可行性研究[J]. 硅酸盐通报, 2019, 38(4): 1018-102. |
| [14] | 李佳;焦向科;杜冬云;叶恒朋;彭秋菊. 广西某电解锰渣的矿物学性质研究[J]. 硅酸盐通报, 2017, 36(3): 947-952. |
| [15] | 侯思懿;铁生年. 硅片切割废砂浆的资源化利用现状[J]. 硅酸盐通报, 2016, 35(5): 1527-1531. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||