[1] 王 鑫, 李玉华, 何立环, 等. 中国水泥行业2011—2022年二氧化碳和大气污染物排放分析[J]. 中国环境监测, 2024, 40(2): 8-18. WANG X, LI Y H, HE L H, et al. Analysis on the emissions of carbon dioxide and air pollutants in China's cement industry from 2011 to 2022[J]. Environmental Monitoring in China, 2024, 40(2): 8-18 (in Chinese). [2] 王 科, 吕 晨. 中国碳市场建设成效与展望(2024)[J]. 北京理工大学学报(社会科学版), 2024, 26(2): 16-27. WANG K, LYU C. Achievements and prospect of China's national carbon market construction(2024)[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2024, 26(2): 16-27 (in Chinese). [3] 沈鸿海, 刘 宇, 郑 焱, 等. 水泥制造业绿色低碳技术研究进展[J]. 科技导报, 2024, 42(4): 21-30. SHEN H H, LIU Y, ZHENG Y, et al. Research progress on low-carbon technologies in cement manufacturing industry[J]. Science & Technology Review, 2024, 42(4): 21-30 (in Chinese). [4] 朱书涵, 陆一磊, 王松伟, 等. 2020—2050年我国水泥行业二氧化碳排放特征及减排潜力研究[J]. 环境科学学报, 2024, 44(2): 453-463. ZHU S H, LU Y L, WANG S W, et al. Characteristics and reduction potential of carbon dioxide emission in China's cement industry from 2020 to 2050[J]. Acta Scientiae Circumstantiae, 2024, 44(2): 453-463 (in Chinese). [5] 王海成, 金 娇, 刘 帅, 等. 环境友好型绿色道路研究进展与展望[J]. 中南大学学报(自然科学版), 2021, 52(7): 2137-2169. WANG H C, JIN J, LIU S, et al. Research progress and prospect of environment-friendly green road[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2137-2169 (in Chinese). [6] 李立涛, 高 谦, 肖柏林, 等. 工业固废开发充填胶凝材料概述与应用展望[J]. 矿业研究与开发, 2020, 40(2): 19-25. LI L T, GAO Q, XIAO B L, et al. Review and application prospect of filling cementitious material developed by industrial solid waste[J]. Mining Research and Development, 2020, 40(2): 19-25 (in Chinese). [7] 陈永晟, 吴建华, 李 琪, 等. 石灰石粉与矿物掺和料协同作用对胶凝材料体系性能的影响[J]. 混凝土世界, 2014(2): 68-72. CHEN Y S, WU J H, LI Q, et al. Effect of synergistic effect of limestone powder and mineral admixture on properties of cementitious materials system[J]. China Concrete, 2014(2): 68-72 (in Chinese). [8] 李 军, 张 霞. 复合矿物掺和料对混凝土力学性能的影响试验[J]. 人民黄河, 2012, 34(12): 138-139. LI J, ZHANG X. Effect of multi-mineral admixtures on mechanics properties of concrete[J]. Yellow River, 2012, 34(12): 138-139 (in Chinese). [9] LIU J, ZHAO J H, ZHAO Y Q, et al. Resource utilization of solid waste from steel industries in cement-based cementitious materials: mechanical properties, hydration behaviors, and environmental impact[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109882. [10] HUANG D W, YUAN Q M, CHEN P, et al. Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag[J]. Journal of Building Engineering, 2022, 62: 105341. [11] RADWAN M K H, ONN C C, MO K H, et al. Eco-mechanical performance of binary and ternary cement blends containing fly ash and slag[J]. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 2021, 174(1): 23-36. [12] HSU S, CHI M, HUANG R. Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar[J]. Construction and Building Materials, 2018, 176: 250-258. [13] YU Z Q, YE G. The pore structure of cement paste blended with fly ash[J]. Construction and Building Materials, 2013, 45: 30-35. [14] LANGAN B W, WENG K, WARD M A. Effect of silica fume and fly ash on heat of hydration of Portland cement[J]. Cement and Concrete Research, 2002, 32(7): 1045-1051. [15] 龙广成, 谢友均, 王培铭. 粉煤灰强度效应的研究[J]. 铁道科学与工程学报, 2005, 2(1): 19-24. LONG G C, XIE Y J, WANG P M. The strength-effect of fly ash[J]. Journal of Railway Science and Engineering, 2005, 2(1): 19-24 (in Chinese). [16] 佟银子, 王元纲, 黄凯健, 等. 混凝土复合掺合料火山灰活性快速评定方法研究[J]. 混凝土与水泥制品, 2017(12): 79-84. TONG Y Z, WANG Y G, HUANG K J, et al. Research on rapid assessment method of pozzolanic activity of concrete with compound admixture[J]. China Concrete and Cement Products, 2017(12): 79-84 (in Chinese). [17] 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. State Administration of Market Supervision and Administration, National Standardization Management Committee. Cement mortar strength test method (ISO method): GB/T 17671—2021[S]. Beijing: China Standard Press, 2021 (in Chinese). [18] 吴泽媚, 毛浩宇, 郑新颜, 等. 高原复杂环境下水泥基材料微结构及性能研究进展[J/OL]. 湖南大学学报(自然科学版), 2025: 1-19 (2025-04-18) [2025-04-21]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HNDX20250417001&dbname=CJFD&dbcode=CJFQ. WU Z M, MAO H Y, ZHENG X Y, et al. Research progress on microstructure and properties of cement-based materials in complex plateau environment[J/OL]. China Industrial Economics, 2025: 1-19 (2025-04-18) [2025-04-21]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HNDX20250417001&dbname=CJFD&dbcode=CJFQ (in Chinese). [19] 符 睿, 段 旭, 刘建宇, 等. 大理、理塘和林芝气象要素的日变化特征对比分析[J]. 高原山地气象研究, 2010, 30(3): 12-17. FU R, DUAN X, LIU J Y, et al. The comparison of variation features of diurnal meteorological elements at DaLi, LiTang and Linzhi Stations[J]. Plateau and Mountain Meteorology Research, 2010, 30(3): 12-17 (in Chinese). [20] GRAEBER G, DÃAZâ MARÃN C D, GAUGLER L C, et al. Extreme water uptake of hygroscopic hydrogels through maximized swelling? induced salt loading[J]. Advanced Materials, 2024, 36(12): 2211783. [21] 刘赞群, 裴 敏, 刘 厚, 等. 半浸泡混凝土中Na2SO4溶液传输过程[J]. 建筑材料学报, 2020, 23(4): 787-793. LIU Z Q, PEI M, LIU H, et al. Transport process of Na2SO4 solution in partially immersed concrete[J]. Journal of Building Materials, 2020, 23(4): 787-793 (in Chinese). [22] 梁华明. 膨胀剂-减缩剂复合调控水泥基材料干燥收缩试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2023. LIANG H M. Experimental study on compound regulation of drying shrinkage of cement-based materials by expansion agent and shrinkage reducer[D]. Harbin: Harbin Institute of Technology, 2023 (in Chinese). [23] 王海旭, 梅文勇, 汤 聪, 等. 低气压环境下水泥砂浆干缩和微结构演变研究[J]. 铁道科学与工程学报, 2025, 22(3): 1121-1131. WANG H X, MEI W Y, TANG C, et al. Investigation on drying shrinkage and microstructure evolution of mortar under low pressure environment[J]. Journal of Railway Science and Engineering, 2025, 22(3): 1121-1131 (in Chinese). [24] 原 健, 王 琴, 曾凡超, 等. 不同温度下矿物掺合料对喷射混凝土水化行为及力学性能的影响[J]. 硅酸盐通报, 2024, 43(2): 407-417. YUAN J, WANG Q, ZENG F C, et al. Effect of mineral admixture on hydration behavior and mechanical properties of shotcrete at different temperatures[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 407-417 (in Chinese). [25] 蒋志律, 杨 涛, 杨梦盈, 等. 掺石灰石粉矿渣水泥砂浆的孔结构与抗渗性能[J]. 混凝土与水泥制品, 2024(10): 79-83. JIANG Z L, YANG T, YANG M Y, et al. Pore structure and impermeability of slag cement mortar mixed with limestone powder[J]. China Concrete and Cement Products, 2024(10): 79-83 (in Chinese). [26] 曾 亮, 胡 彪, 石 齐. 石膏矿渣基多元固废低碳胶凝材料的制备及水化性能[J]. 有色金属(冶炼部分), 2024(9): 154-163. ZENG L, HU B, SHI Q. Preparation and hydration properties of multi-component solid waste low carbon cementitious materials based on gypsum and slag[J]. Nonferrous Metals (Extractive Metallurgy), 2024(9): 154-163 (in Chinese). [27] 厉帅康, 俞 峰, 陈 鑫, 等. 水泥-矿渣基早强固化剂制备及固化土宏微观性能研究[J]. 硅酸盐通报, 2023, 42(11): 3964-3977+4005. LI S K, YU F, CHEN X, et al. Preparation of cement-slag based early strength curing agent and macro and micro properties of solidified soil[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3964-3977+4005 (in Chinese). [28] 高云楠, 张领帅, 侯 莉, 等. 多元固废胶凝材料在20和40 ℃固化洗砂余泥的研究[J]. 硅酸盐通报, 2025, 44(2): 590-601+641. GAO Y N, ZHANG L S, HOU L, et al. Application of multi-solid-waste cementitious materials in curing washing sludge at 20 and 40 ℃[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 590-601+641 (in Chinese). [29] 崔孝炜, 倪 文, 任 超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J]. 材料研究学报, 2017, 31(9): 687-694. CUI X W, NI W, REN C. Hydration mechanism of steel slag-slag-based full solid-waste cementitious materials[J]. Journal of Materials Research, 2017, 31(9): 687-694 (in Chinese). [30] 蒋 勇, 廖 斌, 王小均, 等. 钢渣复合矿粉对不同养护条件下混凝土性能的影响[J]. 金属矿山, 2024(5): 311-317. JIANG Y, LIAO B, WANG X, et al. Effect of steel slag composite mineral powder on concrete performance under different curing conditions[J]. Metal Mines, 2024(5): 311-317 (in Chinese). [31] 潘正武, 王荣杰. 温度对高掺量掺合料混凝土抗压强度的影响研究[J]. 混凝土世界, 2024(4): 29-32. PAN Z W, WANG R J. Study on the effect of temperature on the compressive strength of high-content blended concrete[J]. Concrete World, 2024(4): 29-32 (in Chinese). |