[1] 罗 哲, 黄敦文, 彭 晖. 碱激发偏高岭土-矿渣砂浆的碱骨料反应机理研究[J]. 硅酸盐通报, 2023, 42(8): 2830-2836. LUO Z, HUANG D W, PENG H. Alkali-aggregate reaction mechanism of alkali-activated metakaolin-slag mortar[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2830-2836 (in Chinese). [2] 聂 松, 周 健, 徐名凤, 等. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2): 60-68. NIE S, ZHOU J, XU M F, et al. Research progress of low-carbon binders[J]. Materials Reports, 2024, 38(2): 60-68 (in Chinese). [3] 杨 达, 庞来学, 宋 迪, 等. 粉煤灰对碱激发矿渣/粉煤灰体系的作用机理研究[J]. 硅酸盐通报, 2021, 40(9): 3005-3011. YANG D, PANG L X, SONG D, et al. Reaction mechanism of fly ash in alkali-activated slag/fly ash system[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 3005-3011 (in Chinese). [4] 陈柯宇, 吴大志, 胡俊涛. 基于组分的地聚合物胶凝材料反应机理及其制备参数的研究进展[J]. 硅酸盐通报, 2020, 39(7): 2033-2041. CHEN K Y, WU D Z, HU J T. Advances in the reaction mechanism and preparation parameters of geopolymer binder material based on components[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2033-2041 (in Chinese). [5] LEE N K, LEE H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials, 2013, 47: 1201-1209. [6] AYDıN S. A ternary optimisation of mineral additives of alkali activated cement mortars[J]. Construction and Building Materials, 2013, 43: 131-138. [7] WANG Y F, LIU P, KONG D W, et al. Investigation of the properties and microscopic mechanism of red mud-phosphogypsum-based composite cementitious materials[J]. Journal of Building Engineering, 2025, 101: 111962. [8] TIAN Z, LI Y C, ZHENG J J, et al. A state-of-the-art on self-sensing concrete: materials, fabrication and properties[J]. Composites Part B: Engineering, 2019, 177: 107437. [9] REDDY P N, KAVYATEJA B V, JINDAL B B. Structural health monitoring methods, dispersion of fibers, micro and macro structural properties, sensing, and mechanical properties of self-sensing concrete: a review[J]. Structural Concrete, 2021, 22(2): 793-805. [10] MARE M, OUELLET-PLAMONDON C M. Greener, smarter, stronger: self-sensing construction materials from one-part alkali-activated materials[J]. Materials Letters, 2023, 349: 134830. [11] MARE M, OUELLET-PLAMONDON C M. Highly piezoresistive, self-sensing, one-part potassium-activated inorganic polymers for structural health monitoring[J]. Materials Today Sustainability, 2022, 20: 100261. [12] MA Y W, LI F J, XIE H J, et al. Self-sensing properties of alkali-activated materials prepared with different precursors[J]. Construction and Building Materials, 2023, 409: 134201. [13] VLACHAKIS C, PERRY M, BIONDI L. Self-sensing alkali-activated materials: a review[J]. Minerals, 2020, 10(10): 885. [14] SUO Y X, XIA H T, GUO R X, et al. Study on self-sensing capabilities of smart cements filled with graphene oxide under dynamic cyclic loading[J]. Journal of Building Engineering, 2022, 58: 104775. [15] 张立卿, 肖振荣, 许开成, 等. 单掺/复掺碳纳米管和纳米二氧化钛硫铝酸盐水泥复合材料力学与自感知性能的影响[J].复合材料学报, 2025, 42(4): 2048-2061. ZHANG L Q, XIAO Z R, XU K C, et al. Self-sensing performance of cementitious composites with electrostatic self-assembly carbon nanotube/titanium dioxide[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 2048-2061 (in Chinese). [16] 韩宝国, 陈 伟, 欧进萍. 乙炔炭黑水泥基复合材料的压敏性[J]. 复合材料学报, 2008, 25(3): 39-44. HAN B G, CHEN W, OU J P. Piezoresistivity of cement-based materials with acetylene carbon black[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 39-44 (in Chinese). [17] 马倩敏, 黄丽萍, 牛治亮, 等. 碱激发剂浓度及模数对碱矿渣胶凝材料抗压性能及水化产物的影响研究[J]. 硅酸盐通报, 2018, 37(6): 2002-2007. MA Q M, HUANG L P, NIU Z L, et al. Effect of alkali concentration and modulus of alkaline activator on the compressive properties and hydration products of alkali activated slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6): 2002-2007 (in Chinese). [18] 孙明清. 碳纤维混凝土与素混凝土的力电机敏性及应用研究[D]. 武汉: 武汉理工大学, 2002. SUN M Q. Study on force-motor sensitivity and application of carbon fiber concrete and plain concrete[D]. Wuhan: Wuhan University of Technology, 2002 (in Chinese). [19] 李 平, 马倩敏, 谭绍恩, 等. 活化剂种类及含量对碱激发矿渣/红砂岩胶凝材料的影响[J]. 材料导报, 2024, 38(增刊2): 270-274. LI P, MA Q M, TAN S E, et al. Effect of activator type and content on alkali-activated slag/red sandstone cementitious materials[J]. Materials Reports, 2024, 38(supplement 2): 270-274 (in Chinese). [20] ROVNANÍK P, KUSÁK I, BAYER P, et al. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars[J]. Cement and Concrete Research, 2019, 118: 84-91. [21] CAO J Y, WEN S H, CHUNG D D L. Defect dynamics and damage of cement-based materials, studied by electrical resistance measurement[J]. Journal of Materials Science, 2001, 36(18): 4351-4360. [22] 邓丽思. 碱激发粉煤灰/矿渣导电砂浆的制备及性能研究[D]. 广州: 广州大学, 2019. DENG L S. Preparation and properties of alkali-activated fly ash/slag conductive mortar[D]. Guangzhou: Guangzhou University, 2019 (in Chinese). |