[1] 刘 方, 王宝民, 袁晓洒, 等. 掺加废旧橡胶颗粒混凝土的韧性试验研究[J]. 混凝土, 2019(3): 78-81+85. LIU F, WANG B M, YUAN X S, et al. Experimental study on toughness of concrete containing scrap rubber[J]. Concrete, 2019(3): 78-81+85 (in Chinese). [2] 曾 磊, 杨 涛, 马林玲. PVA纤维橡胶混凝土力学性能及微观特征分析[J]. 长江大学学报(自然科学版), 2023, 20(6): 125-133. ZENG L, YANG T, MA L L. Analysis of mechanical properties and microscopic characteristics of PVA fiber rubber concrete[J]. Journal of Yangtze University (Natural Science Edition), 2023, 20(6): 125-133 (in Chinese). [3] 薛 刚, 孙立所, 邵建文, 等. 高掺量橡胶集料水泥砂浆收缩性能研究[J]. 硅酸盐通报, 2020, 39(10): 3252-3259. XUE G, SUN L S, SHAO J W, et al. Shrinkage performance of cement mortar with high content of rubber aggregate[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3252-3259 (in Chinese). [4] MO J X, ZENG L, GUO F, et al. Experimental study on damping properties of rubber powder modified styrene-acrylic emulsion concrete beam[J]. Journal of Building Engineering, 2020, 32: 101728. [5] ANGELIN A F, LINTZ R C C, GACHET-BARBOSA L A, et al. The effects of porosity on mechanical behavior and water absorption of an environmentally friendly cement mortar with recycled rubber[J]. Construction and Building Materials, 2017, 151: 534-545. [6] 周仙奕, 莫俊杰. 橡胶颗粒改性水泥砂浆的微观孔结构研究[J]. 广东公路交通, 2022, 48(4): 7-11. ZHOU X Y, MO J J. Study on micro pores structure of cement mortar modified by rubber particles[J]. Guangdong Highway Communications, 2022, 48(4): 7-11 (in Chinese). [7] TIAN L, QIU L C, LI J J, et al. Experimental study of waste tire rubber, wood-plastic particles and shale ceramsite on the performance of self-compacting concrete[J]. Journal of Renewable Materials, 2020, 8(2): 154-170. [8] 陈卓明, 李丽娟, 熊 哲. 橡胶混凝土胶凝材料改进试验研究[J]. 混凝土与水泥制品, 2019(9): 90-94. CHEN Z M, LI L J, XIONG Z. Experimental study for improved cementing materials of rubberized concrete[J]. China Concrete and Cement Products, 2019(9): 90-94 (in Chinese). [9] 胡艳丽, 高培伟, 李富荣, 等. 不同取代率的橡胶混凝土力学性能试验研究[J]. 建筑材料学报, 2020, 23(1): 85-92. HU Y L, GAO P W, LI F R, et al. Experimental study on mechanical properties of rubber concrete with different substitution rates[J]. Journal of Building Materials, 2020, 23(1): 85-92 (in Chinese). [10] 马豪达, 白 银, 陈 波, 等. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的试验研究[J/OL]. 材料导报, 1-12 (2024-02-05)[2024-10-15]. https://kns.cnki.net/kcms/detail/50.1078.TB.20240202.1726.006.html. MA H D, BAI Y, CHEN B, et al. Experimental study on the influence of water-binder ratio and rubber content on the mechanical properties and energy evolution of mortar[J/OL]. Material introduction, 1-12 (2024-02-05)[2024-10-15]. https://kns.cnki.net/kcms/detail/50.1078.TB.20240202.1726.006.html (in Chinese). [11] TUDIN D Z A, RIZALMAN A N. Effect of water-cement ratio on the properties of NaOH-treated rubberized mortar[J]. Key Engineering Materials, 2020, 862: 135-139. [12] FENG W H, LIU F, YANG F, et al. Compressive behaviour and fragment size distribution model for failure mode prediction of rubber concrete under impact loads[J]. Construction and Building Materials, 2021, 273: 121767. [13] LIU F, MENG L Y, NING G F, et al. Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement[J]. Construction and Building Materials, 2015, 95: 207-217. [14] NEHDI M, KHAN A, SUMNER J. Flexible crumb tire rubber-filled cement mortars as a protective system for buried infrastructure[J]. Journal of ASTM International, 2005, 2(1): 1-15. [15] 蒋连接, 朱方之, 马 静, 等. 橡胶颗粒对玻化微珠保温砂浆基本性能的影响[J]. 结构工程师, 2020, 36(6): 123-128. JIANG L J, ZHU F Z, MA J, et al. Influence of rubber particle on basic properties of glazed hollow beads thermal insulation mortar[J]. Structural Engineers, 2020, 36(6): 123-128 (in Chinese). [16] 翟胜田. 橡胶集料混凝土材料的设计、制备与性能研究[D]. 南京: 东南大学, 2023. ZHAI S T. Design, preparation and properties of rubber aggregate concrete materials[D]. Nanjing: Southeast University, 2023 (in Chinese). [17] 汪振双, 苏昊林. 冻融条件下再生橡胶混凝土损伤演变与强度相关性研究[J]. 硅酸盐通报, 2016, 35(12): 4286-4291. WANG Z S, SU H L. Correlation between recycled rubber concrete strength and damage evolution in freeze thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4286-4291 (in Chinese). [18] 陈证伊. 基于SHPB的橡胶集料混凝土冲击压缩力学性能研究[D]. 绵阳: 西南科技大学, 2022. CHEN Z Y. Research on the impact compressive mechanical properties of rubber aggregate concrete based on SHPB[D]. Mianyang: Southwest University of Science and Technology, 2022 (in Chinese). [19] 杨荣周, 徐 颖, 郑强强, 等. 分级等荷循环受压下橡胶水泥砂浆的疲劳损伤演化[J]. 建筑材料学报, 2021, 24(5): 961-969. YANG R Z, XU Y, ZHENG Q Q, et al. Fatigue and damage evolution characteristics of rubber cement mortar under graded constant load cyclic compression[J]. Journal of Building Materials, 2021, 24(5): 961-969 (in Chinese). [20] 王 江, 高久平, 原通鹏, 等. 废旧轮胎胶粉对水泥砂浆性能的影响[J]. 公路工程, 2017, 42(1): 225-227. WANG J, GAO J P, YUAN T P, et al. Influence of scrap tire rubber powder on the properties of cement mortar[J]. Highway Engineering, 2017, 42(1): 225-227 (in Chinese). [21] XIONG Z, TANG Z X, HE S H, et al. Analysis of mechanical properties of rubberised mortar and influence of styrene-butadiene latex on interfacial behaviour of rubber-cement matrix[J]. Construction and Building Materials, 2021, 300: 124027. [22] 陈 伟, 孟 皞, 颜 岩, 等. 废橡胶颗粒联合改性用于制备水泥砂浆机理研究[J]. 硅酸盐通报, 2020, 39(6): 1715-1721+1727. CHEN W, MENG H, YAN Y, et al. Study on mechanism of joint modification of waste rubber particles in preparation of cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1715-1721+1727 (in Chinese). [23] 徐 颖, 刘家兴, 杨荣周, 等. 超高强度橡胶混凝土的力学特性及能量演化[J]. 建筑材料学报, 2023, 26(6): 612-622. XU Y, LIU J X, YANG R Z, et al. Mechanical properties and energy evolution of ultra high strength rubber concrete[J]. Journal of Building Materials, 2023, 26(6): 612-622 (in Chinese). [24] 刘贞鹏, 胡邦胜. 废弃橡胶粉改良水泥混凝土路面性能试验研究[J]. 西部交通科技, 2023(1): 4-6+31. LIU Z P, HU B S. Experimental study on the performance of cement concrete pavement improved by waste rubber powder[J]. Western China Communications Science & Technology, 2023(1): 4-6+31 (in Chinese). [25] 张海波, 李启强, 马龙华, 等. 废旧橡胶水泥砂浆力学性能研究[J]. 混凝土, 2014(4): 121-123. ZHANG H B, LI Q Q, MA L H, et al. Influence of waste rubber aggregate on properties of mortar[J]. Concrete, 2014(4): 121-123 (in Chinese). [26] 龚亦凡, 陈 萍, 张京旭, 等. 废弃橡胶颗粒对再生骨料砂浆技术性能改良[J]. 硅酸盐学报, 2021, 49(10): 2305-2312. GONG Y F, CHEN P, ZHANG J X, et al. Improvement of engineering properties of recycled aggregate mortar by amending waste rubber particles[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2305-2312 (in Chinese). [27] 牛 文, 唐德密. 橡胶粉掺量与粒径对水泥砂浆抗裂性和耐磨性的影响研究[J]. 施工技术, 2017, 46(17): 73-77. NIU W, TANG D M. Study on effect of rubber powder mixing amount and particle size on crack resistance and wear resistance of cement mortar[J]. Construction Technology, 2017, 46(17): 73-77 (in Chinese). [28] 王家庆, 宋广伟, 李 强, 等. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(增刊1): 328-343. WANG J Q, SONG G W, LI Q, et al. Rubber-concrete interface modification method and performance enhancement path[J]. Chemical Industry and Engineering Progress, 2023, 42(supplement 1): 328-343 (in Chinese). [29] 季 节, 王颢翔, 王 琴, 等. 改性废旧橡胶粉对水泥胶砂性能的影响[J]. 建筑材料学报, 2021, 24(4): 679-686. JI J, WANG H X, WANG Q, et al. Effect of modified rubber powder on performances of cement mortar[J]. Journal of Building Materials, 2021, 24(4): 679-686 (in Chinese). [30] 李 刊, 魏智强, 乔宏霞, 等. 纳米SiO2改性聚合物水泥基复合材料早期微观结构及性能[J]. 复合材料学报, 2020, 37(9): 2272-2284. LI K, WEI Z Q, QIAO H X, et al. Early microstructure and properties of nano-SiO2 modified polymer cement-based composites[J]. Composite Materials, 2020, 37(9): 2272-2284 (in Chinese). [31] 石 妍, 杨华全, 陈 霞, 等. 骨料种类对混凝土孔结构及微观界面的影响[J]. 建筑材料学报, 2015, 18(1): 133-138. SHI Y, YANG H Q, CHEN X, et al. Effect of aggregate type on pore structure and micro-interface of concrete[J]. Journal of Construction Materials, 2015, 18(1): 133-138 (in Chinese). [32] 陈 峰, 童生豪, 沈世林. 海洋环境下镍铁渣粉水泥土强度增强的微观机理研究[J]. 武汉大学学报(工学版), 2022, 55(7): 682-690. CHEN F, TONG S H, SHEN S L. Study on the microscopic mechanism of strength enhancement of ferronickel slag cement soil under marine environment[J]. Journal of Wuhan University (Engineering Edition), 2022, 55(7): 682-690 (in Chinese). [33] WU H, YANG D, XU J, et al. Water transport and resistance improvement for the cementitious composites with eco-friendly powder from various concrete wastes[J]. Construction and Building Materials, 2021, 290: 123247. [34] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353. XUE C Z, SHEN A Q, GUO Y C. Prediction model for the compressive strength of concrete mixed with CWCPM based on pore structure parameters[J]. Materials Review, 2019, 33(8): 1348-1353 (in Chinese). |