硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (4): 1208-1226.DOI: 10.16552/j.cnki.issn1001-1625.2024.1607
王紫嫣1,2, 孙涛1,3, 欧阳高尚1,2
收稿日期:2024-12-24
修订日期:2025-02-12
出版日期:2025-04-15
发布日期:2025-04-18
通信作者:
孙 涛,博士,研究员。E-mail:sunt@whut.edu.cn
作者简介:王紫嫣(1996—),女,博士研究生。主要从事生态建筑材料及其关键技术的研究。E-mail:zy_w@whut.edu.cn
基金资助:WANG Ziyan1,2, SUN Tao1,3, OUYANG Gaoshang1,2
Received:2024-12-24
Revised:2025-02-12
Published:2025-04-15
Online:2025-04-18
摘要: 过硫磷石膏矿渣水泥(PESSC)是一种具有低水化热、高体积稳定性、强抗硫酸盐侵蚀能力的新型免煅烧胶凝材料。由于磷石膏内部杂质的持续释放及PESSC特殊的低碱度高硫酸盐水化环境,PESSC基体存在凝结硬化慢、抗碳化能力差、长期性能不稳定等问题,从而限制了其应用。现阶段,亟需寻求可有效调节PESSC水化环境、促进高稳定水化相生成、优化基体微结构的途径,并形成系统的PESSC设计理论与性能调控方法。本工作从PESSC的基本组成及物化特性出发,围绕磷石膏中杂质溶出对石膏结晶、PESSC水化硬化的影响,碱-硫酸盐复合激发矿粉水化机制及其对性能发展的影响,全面探讨了通过磷石膏预处理加速凝结、碱激发调控水化环境推动持续反应、多组分协同水化优化长期性能、改性剂调控稳定水化相生成以提高基体耐久性能的可行性,旨在为发展PESSC体系新理论、新方法提供理论指导。
中图分类号:
王紫嫣, 孙涛, 欧阳高尚. 过硫磷石膏矿渣水泥性能调控研究进展[J]. 硅酸盐通报, 2025, 44(4): 1208-1226.
WANG Ziyan, SUN Tao, OUYANG Gaoshang. Review on Performance Regulation of Phosphogypsum-Based Excess-Sulphate Slag Cement[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1208-1226.
| [1] 赵青林, 周明凯. 超硫酸盐水泥在德国的研究与应用[J]. 新世纪水泥导报, 2008, 14(6): 5-10+25. ZHAO Q L, ZHOU M K. Research and application of supersuiphated cement in Germany[J]. Cement Guide for New Epoch, 2008, 14(6): 5-10+25 (in Chinese). [2] 常 硕, 王 露, 李新宇, 等. 超硫酸盐水泥基材料耐化学侵蚀特性综述[J]. 硅酸盐通报, 2024, 43(12): 4271-4284. CHANG S, WANG L, LI X Y, et al. Summary of chemical erosion resistance of super sulfate cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(12): 4271-4284 (in Chinese). [3] 林宗寿. 过硫磷石膏矿渣水泥与混凝土[M]. 武汉: 武汉理工大学出版社, 2015. LIN Z S, HUANG Y, SHUI Z H, et al. Excess-sulfate phosphogypsum slag cement and concrete[M]. Wuhan: Wuhan University of Technology Press, 2010 (in Chinese). [4] 黄 赟. 磷石膏基水泥的开发研究[D]. 武汉: 武汉理工大学, 2010. HUANG Y. Development and research of phosphogypsum-based cement[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [5] HUANG Y, LIN Z S. Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement[J]. Construction and Building Materials, 2010, 24(7): 1296-1301. [6] 田素芳. 过硫磷石膏矿渣水泥混凝土的配合比设计及性能研究[D]. 武汉: 武汉理工大学, 2013. TIAN S F. Mix proportion design and performance study of supersulphated cement concrete with peroxothion[D]. Wuhan: Wuhan University of Technology, 2013 (in Chinese). [7] 郑 旭, 刘 晨, 颜碧兰, 等. 过硫磷石膏矿渣水泥浆耐水性能研究[J]. 水泥, 2017(4): 11-15. ZHENG X, LIU C, YAN B L, et al. Study of hydrolytic resistance of slag cement paste with phosphogypsum containing rich sulfur[J]. Cement, 2017(4): 11-15 (in Chinese). [8] ZHANG J X, CUI K, CHANG J, et al. Phosphogypsum-based building materials: resource utilization, development, and limitation[J]. Journal of Building Engineering, 2024, 91: 109734. [9] SUN T, XIAO X Y, OUYANG G S, et al. Utilization of waterglass coatings to improve the carbonization resistance of excess-sulphate phosphogypsum slag plastering mortar[J]. Construction and Building Materials, 2023, 408: 133644. [10] XU J, XU F, JIANG Y, et al. Mechanical properties and soluble phosphorus solidification mechanism of a novel high amount phosphogypsum-based mortar[J]. Construction and Building Materials, 2023, 394: 132176. [11] DING C, SUN T, SHUI Z H, et al. Physical properties, strength, and impurities stability of phosphogypsum-based cold-bonded aggregates[J]. Construction and Building Materials, 2022, 331: 127307. [12] OUYANG G S, CHEN J J, WANG Z Y, et al. Valorization of alkali-activated fly ash-slag claddings to enhance the mechanical and leaching properties of phosphogypsum-based cold-bonded aggregates[J]. Developments in the Built Environment, 2024, 18: 100464. [13] OUYANG G S, SUN T, WANG Z Y, et al. Consecutive pozzolanic layerings to depress internal-sulfate-attack corrosion of OPC by phosphogypsum-based cold bonded aggregates[J]. Corrosion Science, 2024, 240: 112458. [14] LIU G, HE M H, CHEN H, et al. Study on the curing conditions on the physico-mechanical and environmental performance of phosphogypsum-based artificial aggregates[J]. Construction and Building Materials, 2024, 415: 135030. [15] SUN T, XU D, OUYANG G S, et al. Mechanical properties and environmental implications of excess-sulfate cement concrete with phosphogypsum-based cold-bonded fine aggregates[J]. Journal of Building Engineering, 2024, 95: 110008. [16] OUYANG G S, SUN T, GUO Y H, et al. Study on the composite compatibility and interfacial properties of excess sulfate phosphogypsum cementing system to OPC and CSˉ A[J]. Composite Structures, 2024, 345: 118389. [17] SUN T, LI W M, XU F, et al. A new eco-friendly concrete made of high content phosphogypsum based aggregates and binder: mechanical properties and environmental benefits[J]. Journal of Cleaner Production, 2023, 400: 136555. [18] 徐 方, 李 恒, 孙 涛, 等. 过硫磷石膏矿渣水泥路面基层材料微观结构及力学性能[J]. 建筑材料学报, 2022, 25(3): 228-234+277. XU F, LI H, SUN T, et al. Microstructure and mechanical properties of excess-sulfate phosphogypsum slag cementitious road base material[J]. Journal of Building Materials, 2022, 25(3): 228-234+277 (in Chinese). [19] LIANG Y S, GUAN B, CAO T W, et al. Study on the properties of an excess-sulphate phosphogypsum slag cement stabilized base-course mixture containing phosphogypsum-based artificial aggregate[J]. Construction and Building Materials, 2023, 409: 134095. [20] LIU G, GUAN B, LIANG Y S, et al. Preparation of phosphogypsum (PG) based artificial aggregate and its application in the asphalt mixture[J]. Construction and Building Materials, 2022, 356: 129218. [21] QIN X T, CAO Y H, GUAN H W, et al. Resource utilization and development of phosphogypsum-based materials in civil engineering[J]. Journal of Cleaner Production, 2023, 387: 135858. [22] SUN T, HE J T, MO Z L, et al. Groutability prediction model of coral sand reinforced by excess-sulfate phosphogypsum slag grouting material under permeation grouting[J]. Construction and Building Materials, 2024, 451: 138697. [23] GU K, CHEN B, PAN Y J. Utilization of untreated-phosphogypsum as filling and binding material in preparing grouting materials[J]. Construction and Building Materials, 2020, 265: 120749. [24] WANG Z Y, SUN T, OUYANG G S, et al. Simultaneous enhanced phosphorus removal and hydration reaction: utilisation of polyaluminium chloride and polyaluminium ferric chloride to modify phosphogypsum-based excess-sulphate slag cement[J]. Journal of Cleaner Production, 2024, 476: 143712. [25] MURALI G, AZAB M. Recent research in utilization of phosphogypsum as building materials: review[J]. Journal of Materials Research and Technology, 2023, 25: 960-987. [26] COSTA A R D, MATOS S R C, CAMARINI G, et al. Hydration of sustainable ternary cements containing phosphogypsum[J]. Sustainable Materials and Technologies, 2021, 28: e00280. [27] BELLEFQIH H, BOURGIER V, BILAL E, et al. Effect of HPO2-4 and brushite on gypsum reactivity and implications for utilization of phosphogypsum in plaster production[J]. Journal of Cleaner Production, 2024, 451: 142013. [28] ENNACIRI Y, BETTACH M. Procedure to convert phosphogypsum waste into valuable products[J]. Materials and Manufacturing Processes, 2018, 33(16): 1727-1733. [29] SINGH M. Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster[J]. Cement and Concrete Research, 2003, 33(9): 1363-1369. [30] 陈雪梅. 磷建筑石膏在碱性环境中的水化硬化和微结构调控研究[D]. 南京: 东南大学, 2021. CHEN X M. Study on hydration hardening and microstructure regulation of phosphorous building gypsum in alkaline environment[D]. Nanjing: Southeast University, 2021 (in Chinese). [31] LIU S H, FANG P P, REN J, et al. Application of lime neutralised phosphogypsum in supersulfated cement[J]. Journal of Cleaner Production, 2020, 272: 122660. [32] CHEN Q S, SUN S Y, WANG Y M, et al. In-situ remediation of phosphogypsum in a cement-free pathway: utilization of ground granulated blast furnace slag and NaOH pretreatment[J]. Chemosphere, 2023, 313: 137412. [33] WU Y, XU F, WU X T, et al. Retardation mechanism of phosphogypsum in phosphogypsum-based excess-sulfate cement[J]. Construction and Building Materials, 2024, 428: 136293. [34] 杜明霞, 王进明, 董发勤, 等. 磷石膏资源化利用研究进展[J]. 矿产保护与利用, 2020, 40(3): 121-126. DU M X, WANG J M, DONG F Q, et al. Research progress on resource utilization of phosphogypsum[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 121-126 (in Chinese). [35] HAN S, ZHAO Z M, CHENG Y H, et al. On pretreatment experimental study of Yunnan phosphorus building gypsum[J]. Advanced Materials Research, 2014, 1025/1026: 837-841. [36] WANG Z Y, SHUI Z H, SUN T, et al. Reutilization of gangue wastes in phosphogypsum-based excess-sulphate cementitious materials: effects of wet co-milling on the rheology, hydration and strength development[J]. Construction and Building Materials, 2023, 363: 129778. [37] MASHIFANA T P. Chemical treatment of phosphogypsum and its potential application for building and construction[J]. Procedia Manufacturing, 2019, 35: 641-648. [38] LIU S H, WANG L, YU B Y. Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement[J]. Construction and Building Materials, 2019, 214: 9-16. [39] LI X B, ZHANG Q. Dehydration behaviour and impurity change of phosphogypsum during calcination[J]. Construction and Building Materials, 2021, 311: 125328. [40] CAO W X, YI W, LI J, et al. A facile approach for large-scale recovery of phosphogypsum: an insight from its performance[J]. Construction and Building Materials, 2021, 309: 125190. [41] LV X F, XIANG L. Investigating the novel process for thorough removal of eutectic phosphate impurities from phosphogypsum[J]. Journal of Materials Research and Technology, 2023, 24: 5980-5990. [42] MESHRI D T. The modern inorganic fluorochemical industry[J]. Journal of Fluorine Chemistry, 1986, 33(1/2/3/4): 195-226. [43] SINGH M, GARG M, REHSI S S. Purifying phosphogypsum for cement manufacture[J]. Construction and Building Materials, 1993, 7(1): 3-7. [44] 杨皓奇, 武发德, 朱干宇, 等. 天然陈化对磷石膏理化性质的影响及作用机理研究[J]. 新型建筑材料, 2023, 50(5): 99-105. YANG H Q, WU F D, ZHU G Y, et al. The effect and mechanism of natural aging procedure on the physicochemical properties of phosphogypsum[J]. New Building Materials, 2023, 50(5): 99-105 (in Chinese). [45] 胡 腾. 过硫磷石膏矿渣水泥混凝土的改性及应用研究[D]. 武汉: 武汉理工大学, 2019. HU T. Modification and application of excess-sulfate phosphogypsum slag cement and concrete[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). [46] 杨 帆, 许 劲, 陈圣潆, 等. 预处理方式对过硫磷石膏矿渣水泥料浆性能的影响研究[J]. 新型建筑材料, 2024, 51(2): 63-67. YANG F, XU J, CHEN S Y, et al. Effect of pretreatment method on properties of excess-sulfate phosphogypsum slurry[J]. New Building Materials, 2024, 51(2): 63-67 (in Chinese). [47] PARK H, JEONG Y, JUN Y B, et al. Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum[J]. Cement and Concrete Composites, 2016, 68: 57-65. [48] PENG Z C, ZHOU Y, WANG J W, et al. The impediment and promotion effects and mechanisms of lactates on the hydration of supersulfated cements-Aiming at a performance enhancement[J]. Journal of Cleaner Production, 2022, 341: 130751. [49] GIJBELS K, PONTIKES Y, SAMYN P, et al. Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum[J]. Cement and Concrete Research, 2020, 132: 106054. [50] XING J R, ZHOU Y, PENG Z C, et al. The influence of different kinds of weak acid salts on the macro-performance, micro-structure, and hydration mechanism of the supersulfated cement[J]. Journal of Building Engineering, 2023, 66: 105937. [51] GIJBELS K, NGUYEN H, KINNUNEN P, et al. Feasibility of incorporating phosphogypsum in ettringite-based binder from ladle slag[J]. Journal of Cleaner Production, 2019, 237: 117793. [52] 王紫嫣. 过硫磷石膏矿渣水泥水化硬化性能调控研究[D]. 武汉: 武汉理工大学, 2022. WANG Z Y. Study on the regulation of hydration hardening performance of supersulphated cement with perothion[D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese). [53] SUN T, LI Z W, WANG Z Y, et al. Optimization on hydration efficiency of an all-solid waste binder: carbide slag activated excess-sulphate phosphogypsum slag cement[J]. Journal of Building Engineering, 2024, 86: 108851. [54] 罗晓洪, 张世俊, 郭荣鑫, 等. 电石渣替代水泥作碱激发剂对过硫磷石膏胶凝材料性能和微观结构的影响[J]. 材料导报, 2023, 37(增刊2): 298-304. LUO X H, ZHANG S J, GUO R X, et al. Effect of carbide slag instead of cement as alkali activator on properties and microstructure of excess sulphate phosphogypsum cementitious material[J]. Materials Reports, 2023, 37(supplement 2): 298-304 (in Chinese). [55] 王紫嫣, 水中和, 孙 涛, 等. 高铁钢渣作碱激发剂对过硫磷石膏矿渣凝结硬化性能的影响[J]. 材料导报, 2023, 37(增刊1): 277-283. WANG Z Y, SHUI Z H, SUN T, et al. Steel slag with high iron phase activates excess-sulphate slag cement: effect on the coagulation and strength development[J]. Materials Reports, 2023, 37(supplement 1): 277-283 (in Chinese). [56] OUYANG G S, LI Z W, SUN T, et al. Greener phosphogypsum-based all-solid-waste cementitious binder with steel slag activation: hydration, mechanical properties and durability[J]. Journal of Cleaner Production, 2024, 443: 140996. [57] 李 博. Keggin-Al13调控矿渣水泥水化过程及产物结构机理研究[D]. 武汉: 武汉理工大学, 2020. LI B. Study on Keggin-Al13 regulating hydration process of slag cement and product structure mechanism[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). [58] GRACIOLI B, ANGULSKI DA LUZ C, BEUTLER C S, et al. Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements[J]. Construction and Building Materials, 2020, 262: 119961. [59] MATSCHEI T, BELLMANN F, STARK J. Hydration behaviour of sulphate-activated slag cements[J]. Advances in Cement Research, 2005, 17(4): 167-178. [60] 楼宗汉, 徐先宇, 韩 韧, 等. 矿渣水泥中钙矾石形成条件及其作用[J]. 硅酸盐学报, 1981, 9(3): 295-301+376. LOU Z H, XU X Y, HAN R, et al. On the formation and reaction of ettringite in slag cement[J]. Journal of the Chinese Ceramic Society, 1981, 9(3): 295-301+376 (in Chinese). [61] 彭家惠, 楼宗汉. 钙矾石形成机理的研究[J]. 硅酸盐学报, 2000, 28(6): 511-515. PENG J H, LOU Z H. Study on the mechanism of ettringite formation[J]. Journal of the Chinese Ceramic Society, 2000, 28(6): 511-515 (in Chinese). [62] MUN K J, HYOUNG W K, LEE C W, et al. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator[J]. Construction and Building Materials, 2007, 21(6): 1342-1350. [63] 徐 方, 李 恒, 孙 涛, 等. 基于分子动力学模拟的过硫磷石膏矿渣水泥组成设计[J]. 复合材料学报, 2022, 39(6): 2821-2828. XU F, LI H, SUN T, et al. Composition design of excess-sulfate phosphogypsum slag cement based on molecular dynamics simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2821-2828 (in Chinese). [64] MASOUDI R, HOOTON R D. Examining the hydration mechanism of supersulfated cements made with high and low-alumina slags[J]. Cement and Concrete Composites, 2019, 103: 193-203. [65] GRUSKOVNJAK A, LOTHENBACH B, HOLZER L, et al. Hydration of alkali-activated slag: comparison with ordinary Portland cement[J]. Advances in Cement Research, 2006, 18(3): 119-128. [66] WANG Y B, HU Y, HE X Y, et al. Hydration and compressive strength of supersulfated cement with low-activity high alumina ferronickel slag[J]. Cement and Concrete Composites, 2023, 136: 104892. [67] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243. [68] WANG Z Y, SHUI Z H, SUN T, et al. Recycling utilization of phosphogypsum in eco excess-sulphate cement: synergistic effects of metakaolin and slag additives on hydration, strength and microstructure[J]. Journal of Cleaner Production, 2022, 358: 131901. [69] WANG Z Y, SHUI Z H, SUN T, et al. An eco-friendly phosphogypsum-based cementitious material: performance optimization and enhancing mechanisms[J]. Frontiers in Physics, 2022, 10: 892037. [70] CHEN W, LUO Z P, SUN T, et al. Utilization of high-volume phosphogypsum in artificial aggregate by compaction granulation: effects of muck on physical properties, strength and leaching stability[J]. Journal of Sustainable Cement-Based Materials, 2023, 12(8): 951-961. [71] 陆建鑫. 过硫磷石膏矿渣水泥混凝土的制备与耐久性研究[D]. 武汉: 武汉理工大学, 2013. LU J X. Study on preparation and durability of supersulphated cement concrete with parathion[D]. Wuhan: Wuhan University of Technology, 2013 (in Chinese). [72] XIAO Y, SUN W J, TAN Y Z, et al. Enhancement of phosphogypsum-based solid waste cementitious materials via seawater and metakaolin synergy: strength, microstructure, and environmental benefits[J]. Sustainable Materials and Technologies, 2024, 41: e01029. [73] LIU X, TANG P, CHEN W. Development of an ettringite-based low carbon binder by promoting the nucleation and Ostwald ripening process[J]. Construction and Building Materials, 2024, 427: 136282. [74] CHEN W, LI B, LI Q, et al. Effect of polyaluminum chloride on the properties and hydration of slag-cement paste[J]. Construction and Building Materials, 2016, 124: 1019-1027. [75] 李 博. 聚合铝改性C-A-S-H凝胶结构特性及胶凝能力研究[D]. 武汉: 武汉理工大学, 2016. LI B. Study on structural characteristics and gelling ability of C-A-S-H gel modified by polyaluminum[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese). [76] SCRIVENER K L, TAYLOR H F W. Delayed ettringite formation: a microstructural and microanalytical study[J]. Advances in Cement Research, 1993, 5(20): 139-146. [77] TANG P, WEN J Q, FU Y B, et al. Improving the early-age properties of eco-binder with high volume waste gypsum: hydration process and ettringite formation[J]. Journal of Building Engineering, 2024, 86: 108988. [78] 文嘉祺. 铝相对过硫磷石膏矿渣水泥体系性能提升机制研究[D]. 武汉: 武汉理工大学, 2024. WEN J Q. Study on the mechanism of performance improvement of aluminum relative to excess-sulfate phosphogypsum-slag cement[D]. Wuhan: Wuhan University of Technology, 2024 (in Chinese). [79] LV X D, YANG L, WANG F Z, et al. Hydration, microstructure characteristics, and mechanical properties of high-ferrite Portland cement in the presence of fly ash and phosphorus slag[J]. Cement and Concrete Composites, 2023, 136: 104862. [80] ZHANG K C, SHEN P L, YANG L, et al. Development of high-ferrite cement: toward green cement production[J]. Journal of Cleaner Production, 2021, 327: 129487. [81] EMANUELSON A, HENDERSON E, HANSEN S. Hydration of ferrite Ca2AlFeO5 in the presence of sulphates and bases[J]. Cement and Concrete Research, 1996, 26(11): 1689-1694. [82] HUANG X, HU S G, WANG F Z, et al. Enhanced sulfate resistance: the importance of iron in aluminate hydrates[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6792-6801. [83] NOGUCHI N, SIVENTHIRARAJAH K, CHABAYASHI T, et al. Hydration of ferrite-rich Portland cement: evaluation of Fe-hydrates and Fe uptake in calcium-silicate-hydrates[J]. Construction and Building Materials, 2021, 288: 123142. [84] FUKUHARA M, GOTO S, ASAGA K, et al. Mechanisms and kinetics of C4AF hydration with gypsum[J]. Cement and Concrete Research, 1981, 11(3): 407-414. [85] DILNESA B Z, LOTHENBACH B, RENAUDIN G, et al. Synthesis and characterization of hydrogarnet Ca3(AlxFe1-x)2(SiO4)y(OH)4(3-y)[J]. Cement and Concrete Research, 2014, 59: 96-111. [86] DILNESA B Z, WIELAND E, LOTHENBACH B, et al. Fe-containing phases in hydrated cements[J]. Cement and Concrete Research, 2014, 58: 45-55. [87] MÖSCHNER G, LOTHENBACH B, WINNEFELD F, et al. Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1-xFex(OH)6] 2(SO4)3·26H2O)[J]. Cement and Concrete Research, 2009, 39(6): 482-489. [88] GIJBELS K, NGUYEN H, KINNUNEN P, et al. Radiological and leaching assessment of an ettringite-based mortar from ladle slag and phosphogypsum[J]. Cement and Concrete Research, 2020, 128: 105954. [89] CODY A M, LEE H, CODY R D, et al. The effects of chemical environment on the nucleation, growth, and stability of ettringite[Ca3Al(OH)6] 2(SO4)3·26H2O[J]. Cement and Concrete Research, 2004, 34(5): 869-881. [90] WAN D W, ZHANG W Q, TAO Y, et al. The impact of Fe dosage on the ettringite formation during high ferrite cement hydration[J]. Journal of the American Ceramic Society, 2021, 104(7): 3652-3664. [91] MÖSCHNER G, LOTHENBACH B, ROSE J, et al. Solubility of fe-ettringite (Ca6[Fe(OH)6] 2(SO4)3·26H2O)[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 1-18. [92] WANG Z Y, SUN T, OUYANG G S, et al. Role of polyferric sulphate in hydration regulation of phosphogypsum-based excess-sulphate slag cement: a multiscale investigation[J]. Science of the Total Environment, 2024, 948: 173750. [93] 郑俊杰, 黄 赟, 水中和, 等. 过硫磷石膏矿渣水泥混凝土抗氯离子渗透性能的研究[J]. 新型建筑材料, 2015, 42(10): 29-33. ZHENG J J, HUANG Y, SHUI Z H, et al. Chloride ion permeability of excessive-sulfate phosphogypsum-slag-cement ternary blended concrete[J]. New Building Materials, 2015, 42(10): 29-33 (in Chinese). [94] 丁 沙. 过硫磷石膏矿渣水泥混凝土抗海盐侵蚀性能与机理研究[D]. 武汉: 武汉理工大学, 2014. DING S. Study on the anti-sea salt corrosion performance and mechanism of supersulphated cement concrete with parathion[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). [95] WANG Z Y, SHUI Z H, LI Z W, et al. Hydration characterization of Mg2+ blended excess-sulphate phosphogypsum slag cement system during early age[J]. Construction and Building Materials, 2022, 345: 128191. [96] WANG Z Y, OUYANG G S, LI Z W, et al. Excess-sulphate phosphogypsum slag cement blended with magnesium ion: part Ⅱ-the long-term microstructure characterisation and phase evolution[J]. Construction and Building Materials, 2024, 431: 136513. [97] XIE Y F, SUN T, SHUI Z H, et al. The impact of carbonation at different CO2 concentrations on the microstructure of phosphogypsum-based supersulfated cement paste[J]. Construction and Building Materials, 2022, 340: 127823. [98] 殷小川. 磷石膏基水泥组成与性能的研究[D]. 武汉: 武汉理工大学, 2011. YIN X C. Study on composition and properties of phosphogypsum-based cement[D]. Wuhan: Wuhan University of Technology, 2011 (in Chinese). [99] WANG Z Y, SHUI Z H, SUN T, et al. Effect of MgO and superfine slag modification on the carbonation resistance of phosphogypsum-based cementitious materials: based on hydration enhancement and phase evolution regulation[J]. Construction and Building Materials, 2024, 415: 134914. |
| [1] | 高英力, 熊浩宇, 冯心崚, 朱俊材, 赵福意. 混杂纤维单组分地聚物组成设计及纤维影响效应研究[J]. 硅酸盐通报, 2025, 44(4): 1357-1366. |
| [2] | 吕阳, 葛云露, 赵博宇, 陈扬, 但建明, 周阳, 柯凯, 李相国. 生物质灰对碱激发矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1288-1296. |
| [3] | 苏壮飞, 程尧, 刘泽. 矿渣改性碱激发硅锰渣胶凝材料的宏观性能与微观特性研究[J]. 硅酸盐通报, 2025, 44(4): 1276-1287. |
| [4] | 刘琳, 邵鑫, 庞昆, 郑蕻陈. 基于机器学习的碱激发矿渣-粉煤灰混凝土抗压强度与弹性模量影响因素分析[J]. 硅酸盐通报, 2025, 44(4): 1398-1407. |
| [5] | 张秀泽, 黄敏, 黄慕洋, 黎梦珂, 葛楚怡, 廖先清, 包申旭. 热活化盾构渣土基陶粒的制备及机理研究[J]. 硅酸盐通报, 2025, 44(4): 1556-1565. |
| [6] | 刘德坤, 孙琦. 碱激发钢铁固废混凝土强度形成机理[J]. 硅酸盐通报, 2025, 44(3): 1057-1068. |
| [7] | 吕阳, 吴远帅, 葛云露, 陈扬, 许金生, 蹇守卫, 但建明, 温小栋, 李相国. 稻壳灰与SAP协同内养护对碱激发矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2025, 44(2): 634-641. |
| [8] | 李超, 李志康, 李新宇, 黄永亮, 王武, 罗正东, 李文佳, 许福. 地聚物凝结硬化特性影响因素研究综述[J]. 硅酸盐通报, 2025, 44(2): 501-514. |
| [9] | 李琪, 王亮, 王浩, 王成龙, 徐建, 胡伟. 碳化再生微粉对碱激发矿渣材料的影响[J]. 硅酸盐通报, 2025, 44(1): 289-296. |
| [10] | 孙开强, 刘琳, 郑蕻陈. 碱激发矿渣-粉煤灰胶凝材料力学性能影响因素分析[J]. 硅酸盐通报, 2024, 43(9): 3313-3319. |
| [11] | 范小春, 杨东升, 张宇, 高旭, 喻立举. 外加剂对碱激发胶凝材料干燥收缩性能的影响[J]. 硅酸盐通报, 2024, 43(8): 2788-2796. |
| [12] | 王彦朝, 吕景辉, 王英倡, 郭永昌. PE/PP混杂纤维应变硬化碱激发复合材料力学性能研究[J]. 硅酸盐通报, 2024, 43(8): 2879-2887. |
| [13] | 倪振坤, 薛力梨, 丁艳玲, 刘红飞, 刘开富. 脱硫石膏对碱激发胶凝材料性能及微观结构的影响[J]. 硅酸盐通报, 2024, 43(8): 2933-2940. |
| [14] | 杨林, 杨建宇, 杨伟军. 新型复合激发锂渣基固化剂加固软土试验研究[J]. 硅酸盐通报, 2024, 43(7): 2556-2564. |
| [15] | 胡凯伟, 陈轩, 李廷锋, 张俊杰, 高璇, 杨涛. 机械活化对碳酸钠激发矿渣胶凝材料早期性能的影响[J]. 硅酸盐通报, 2024, 43(7): 2577-2583. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||