[1] 侯秀芳, 冯 晨, 燕汉民, 等. 2023年中国内地城市轨道交通运营线路概况[J]. 都市快轨交通, 2024, 37(1): 10-16. HOU X F, FENG C, YAN H M, et al. Overview of urban rail transit operational lines in Chinese mainland in 2023[J]. Urban Rapid Rail Transit, 2024, 37(1): 10-16 (in Chinese). [2] 朱俊涛, 张飞龙, 李 可, 等. 稻壳灰替代型微膨胀同步注浆料的制备及性能研究[J]. 硅酸盐通报, 2024, 43(10): 3715-3725. Juntao Z H U, Feilong Z, Ke L I, et al. Preparation and Properties of Rice Husk Ash Substitute Micro Expansion Synchronous Grouting Material[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(10): 3715-3725 (in Chinese). [3] 张钦喜, 陶 韬, 王晓杰, 等. 钻孔灌注桩废弃泥浆处理的试验研究[J]. 水利学报, 2015, 46(增刊1): 40-45. ZHANG Q X, TAO T, WANG X J, et al. Experimental study on treatment of waste slurry in cast-in-situ bored pile[J]. Journal of Hydraulic Engineering, 2015, 46(supplement 1): 40-45 (in Chinese). [4] 周文君. 矿渣复合材料固化工程泥浆的力学及耐久性研究[D]. 淮南: 安徽理工大学, 2021. ZHOU W J. Study on mechanics and durability of slag composite solidified engineering slurry[D]. Huainan: Anhui University of Science & Technology, 2021 (in Chinese). [5] 郭卫社, 王百泉, 李沿宗, 等. 盾构渣土无害化处理、资源化利用现状与展望[J]. 隧道建设(中英文), 2020, 40(8): 1101-111. GUO W S, WANG B Q, LI Y Z, et al. Status quo and prospect of harmless disposal and reclamation of shield muck in China[J]. Tunnel Construction, 2020, 40(8): 1101-1112 (in Chinese). [6] NI Z L, WANG S Y, ZHENG X C, et al. Application of geopolymer in synchronous grouting for reusing of the shield muck in silty clay layer[J]. Construction and Building Materials, 2024, 419: 135345. [7] 姚清松, 蔡坤坤, 刘 超, 等. 粉质黏土地层基坑渣土免烧砖配比及力学性能研究[J]. 隧道建设(中英文), 2020, 40(增刊1): 145-151. YAO Q S, CAI K K, LIU C, et al. Study on proportioning and mechanical properties of unfired bricks based on foundation pit muck in silty clay stratum[J]. Tunnel Construction, 2020, 40(supplement 1): 145-151 (in Chinese). [8] 季维生. 700密度等级渣土陶粒制备及其性能研究[J]. 硅酸盐通报, 2017, 36(7): 2209-2214. JI W S. Preparation and performance of 700 density grades muck-ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2209-2214 (in Chinese). [9] 杨雅秀. 绿泥石族矿物热学性质的研究[J]. 矿物学报, 1992, 12(1): 36-44. YANG Y X. A study on the thermal behaviour of chlorite-group minerals[J]. Acta Mineralogica Sinica, 1992, 12(1): 36-44 (in Chinese). [10] DYCK B, WATERS D J, ST-ONGE M R, et al. Muscovite dehydration melting: reaction mechanisms, microstructures, and implications for anatexis[J]. Journal of Metamorphic Geology, 2020, 38(1): 29-52. [11] JIANG T, LI G H, QIU G Z, et al. Thermal activation and alkali dissolution of silicon from illite[J]. Applied Clay Science, 2008, 40(1): 81-89. [12] XU X Q, BAO S X, ZHANG Y M, et al. Role of particle fineness and reactive silicon-aluminum ratio in mechanical properties and microstructure of geopolymers[J]. Construction and Building Materials, 2021, 313: 12548. [13] LUO Y P, BAO S X, ZHANG Y M. Preparation of one-part geopolymeric precursors using vanadium tailing by thermal activation[J]. Journal of the American Ceramic Society, 2020, 103(2): 779-783. [14] QURESHI M N, GHOSH S. Effect of Si/Al ratio on engineering properties of alkali-activated GGBS pastes[J]. Green Materials, 2014, 2(3): 123-131. [15] SHI C J, KRIVENKO P V, ROY D. Alkali-activated cements and concretes[M]. Abingdon, UK: Taylor & Francis, 2006. [16] 王林浩, 程 寅, 高树峰, 等. 煤系高岭石热活化及其对水泥净浆长期强度的影响研究[J]. 太原理工大学学报, 2024, 55(2): 325-330. WANG L H, CHENG Y, GAO S F, et al. Study on thermal activation of coal-bearing kaolinite and its influence on long-term strength of cement paste[J]. Journal of Taiyuan University of Technology, 2024, 55(2): 325-330 (in Chinese). [17] 沈 凡, 韦国苏, 庞若楠, 等. 利用磷尾矿烧制轻质陶粒及其性能研究[J]. 安全与环境学报, 2020, 20(6): 2303-2308. SHEN F, WEI G S, PANG R N, et al. On lightweight ceramsite smelting from phosphorus tailings and its properties to be achieved[J]. Journal of Safety and Environment, 2020, 20(6): 2303-2308 (in Chinese). [18] CHEESEMAN C R, MAKINDE A, BETHANIS S. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash[J]. Resources, Conservation and Recycling, 2005, 43(2): 147-162. [19] LI Y D, WU D F, ZHANG J P, et al. Measurement and statistics of single pellet mechanical strength of differently shaped catalysts[J]. Powder Technology, 2000, 113(1/2): 176-184. [20] BAO S X, QIN L, ZHANG Y M, et al. A combined calcination method for activating mixed shale residue and red mud for preparation of geopolymer[J]. Construction and Building Materials, 2021, 297: 123789. [21] LLOYD R R, PROVIS J L, VAN DEVENTER J S J. Pore solution composition and alkali diffusion in inorganic polymer cement[J]. Cement and Concrete Research, 2010, 40(9): 1386-1392. [22] PUERTAS F, VARGA C, ALONSO M M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution[J]. Cement and Concrete Composites, 2014, 53: 279-288. [23] NASIR M, JOHARI M A M, ADESINA A, et al. Evolution of room-cured alkali-activated silicomanganese fume-based green mortar designed using Taguchi method[J]. Construction and Building Materials, 2021, 307: 124970. [24] LIU Z, WANG J X, JIANG Q K, et al. A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag[J]. Journal of Cleaner Production, 2019, 225: 1184-1193. [25] CHEN B J, PANG L F, ZHOU Z B, et al. Study on the activation mechanism and hydration properties of gold tailings activated by mechanical-chemical-thermal coupling[J]. Journal of Building Engineering, 2022, 48: 104014. [26] BERNAL S A, PROVIS J L, ROSE V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Composites, 2011, 33(1): 46-54. [27] TANGSTAD M. Phase transformation in quartz at elevated temperatures[J]. Aspects in Mining & Mineral Science, 2021, 6(1): 691-699. [28] ISHWARYA G, SINGH B, DESHWAL S, et al. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes[J]. Cement and Concrete Composites, 2019, 97: 226-238. |