[1] XIAO Q F, JU G H, YE F, et al. An innovative approach for assessing the tensile strength of concrete: experimental and numerical investigations[J]. Construction and Building Materials, 2024, 417: 135249. [2] BAI E L, WANG Z H, DU Y H, et al. Mechanical properties and strain rate effect of graphene oxide grafted carbon fiber modified concrete under dynamic impact load[J]. Construction and Building Materials, 2024, 445: 137978. [3] BORGES D C, DE CERQUEIRA PITUBA J J. Homogenized damage model for brittle materials[J]. Mechanics of Advanced Materials and Structures, 2024, 31(26): 8356-8368. [4] 杨谨鸿, 李秀地, 王起帆, 等. 工程水泥基复合材料动态力学性能及抗爆抗冲击能力研究进展[J]. 硅酸盐通报, 2021, 40(8): 2485-2496. YANG J H, LI X D, WANG Q F, et al. Research progress on dynamic mechanical properties and anti-explosion and impact resistance performance of engineered cementitious composite[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2485-2496 (in Chinese). [5] 贾 毅, 宋浩博, 柳其钱, 等. 高韧性聚丙烯纤维混凝土的配合比及力学性能试验研究[J]. 材料导报, 2024, 38(增刊2): 657-661. JIA Y, SONG H B, LIU Q Q, et al. Experimental study on mix ratio and mechanical properties of high toughness polypropylene fiber concrete[J]. Materials Reports, 2024, 38(supplement 2): 657-661 (in Chinese). [6] 谢 磊, 李庆华, 徐世烺. 纤维掺量对聚乙烯醇纤维增强水泥基复合材料动态压缩性能的影响[J]. 复合材料学报, 2021, 38(9): 3086-3100. XIE L, LI Q H, XU S L. Influence of fiber volume fraction on dynamic compressive properties of polyvinyl alcohol fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3086-3100 (in Chinese). [7] GAME D, ARCE G, HASSAN M M, et al. Development of practical and cost-effective ultra-high-performance engineered cementitious composites using natural sand and No silica fume[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2676(7): 312-328. [8] HUANG B T, WENG K F, ZHU J X, et al. Engineered/strain-hardening cementitious composites (ECC/SHCC) with an ultra-high compressive strength over 210 MPa[J]. Composites Communications, 2021, 26: 100775. [9] KAMAL A, KUNIEDA M, UEDA N, et al. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement and Concrete Composites, 2008, 30(10): 863-871. [10] CHEN Y X, YU J, LEUNG C K Y. Use of high strength Strain-Hardening Cementitious Composites for flexural repair of concrete structures with significant steel corrosion[J]. Construction and Building Materials, 2018, 167: 325-337. [11] 李福海, 刘耕园, 刘梦辉, 等. 纤维协同效应下超高性能混凝土的弯曲性能[J]. 同济大学学报(自然科学版), 2023, 51(12): 1835-1844. LI F H, LIU G Y, LIU M H, et al. Flexural properties of ultra-high performance concrete under fiber synergistic effect[J]. Journal of Tongji University (Natural Science), 2023, 51(12): 1835-1844 (in Chinese). [12] LE H T N, POH L H, WANG S S, et al. Critical parameters for the compressive strength of high-strength concrete[J]. Cement and Concrete Composites, 2017, 82: 202-216. [13] HUANG B T, ZHU J X, WENG K F, et al. Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): material design and effect of fiber hybridization[J]. Cement and Concrete Composites, 2022, 129: 104464. [14] 李堂军, 李 亮, 王子晨, 等. 钢-PE混杂纤维水泥基复合材料动态压缩性能试验研究[J]. 防灾减灾工程学报, 2024, 44(5): 1140-1148. LI T J, LI L, WANG Z C, et al. Experimental study on dynamic compressive properties of steel-PE hybrid fiber cement-based composites[J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(5): 1140-1148 (in Chinese). [15] 罗银剑, 李秀地, 蔡 涛, 等. ECC冲击压缩力学特性及耗能机制的试验研究[J]. 振动与冲击, 2023, 42(4): 19-27+64. LUO Y J, LI X D, CAI T, et al. An experimental study on the mechanical properties of shock compression and energy consumption mechanism of ECC[J]. Journal of Vibration and Shock, 2023, 42(4): 19-27+64 (in Chinese). [16] LIU L F, XIAO J, WU Z J. The effect of fiber content on the static and dynamic performance of PE-ECC[J]. Case Studies in Construction Materials, 2024, 20: e03041. [17] MA H Q, YI C, WU C. Review and outlook on durability of engineered cementitious composite (ECC)[J]. Construction and Building Materials, 2021, 287: 122719. [18] 高光发. 基于广义波阻抗理论的SHPB试验中弹性压缩阶段试件应力-应变曲线的应力波效应及其影响机理[J]. 爆炸与冲击, 2024, 44(9): 100-113. GAO G F. Stress wave effects and influencing mechanisms on stress-strain curves in the elastic compression stage of SHPB tests based on generalized wave impedance theory[J]. Explosion and Shock Waves, 2024, 44(9): 100-113 (in Chinese). [19] 杨 科, 郑诗章, 刘文杰, 等. 循环冲击荷载作用下煤岩组合体力学响应和能量耗散特征研究[J]. 振动与冲击, 2024, 43(20): 150-161. YANG K, ZHENG S Z, LIU W J, et al. A study on the mechanical response and energy dissipation characteristics of coal-rock composite under cyclical impact loads[J]. Journal of Vibration and Shock, 2024, 43(20): 150-161 (in Chinese). [20] 王志亮, 汪大为, 汪书敏, 等. 循环冲击下大理岩的损伤力学行为及能量耗散特性[J]. 爆炸与冲击, 2024, 44(4): 49-61. WANG Z L, WANG D W, WANG S M, et al. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion and Shock Waves, 2024, 44(4): 49-61 (in Chinese). [21] 陈 骏, 张 祥, 赵康朴, 等. 初始应力状态对侧限条件黏土动态压缩过程和力学性能的影响[J]. 工程科学与技术, 2023, 55(3): 69-76. CHEN J, ZHANG X, ZHAO K P, et al. Effect of initial stress state on dynamic compression process and mechanical properties of clay under lateral restriction conditions[J]. Advanced Engineering Sciences, 2023, 55(3): 69-76 (in Chinese). [22] ZHU J X, XU L Y, HUANG B T, et al. Recent developments in engineered/strain-hardening cementitious composites (ECC/SHCC) with high and ultra-high strength[J]. Construction and Building Materials, 2022, 342: 127956. [23] 王振波, 郝如升, 李鹏飞, 等. 海水珊瑚砂ECC的力学性能与裂纹宽度控制[J]. 复合材料学报, 2023, 40(4): 2261-2272. WANG Z B, HAO R S, LI P F, et al. Mechanical properties and crack width control of seawater coral sand ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2261-2272 (in Chinese). |