[1] ZANOTTO E D, MAURO J C. The glassy state of matter: its definition and ultimate fate[J]. Journal of Non-Crystalline Solids, 2017, 471: 490-495. [2] KURKJIAN C R, PRINDLE W R. Perspectives on the history of glass composition[J]. Journal of the American Ceramic Society, 1998, 81(4): 795-813. [3] 何 流, 闵 蛟, 陆仕银, 等. 玻璃基板性能对TFT-LCD面板TP的影响[J]. 玻璃, 2023, 50(6): 29-34. HE L, MIN J, LU S Y, et al. The influence of the glass substrate properties on the TP control of TFT-LCD[J]. Glass, 2023, 50(6): 29-34 (in Chinese). [4] 李 淼, 孔令歆, 王答成, 等. 柔性显示用玻璃制造加工进展综述[J]. 玻璃, 2022, 49(5): 11-19. LI M, KONG L X, WANG D C, et al. Review on manufacturing and processing progress of glass for flexible display[J]. Glass, 2022, 49(5): 11-19 (in Chinese). [5] 韩建军, 吴孟鸣, 汤何锐, 等. TFT-LCD基板玻璃的研究与发展[J]. 硅酸盐通报, 2017, 36(12): 4078-4083. HAN J J, WU M M, TANG H R, et al. Research and development of TFT-LCD substrate glass[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4078-4083 (in Chinese). [6] 田英良, 张 磊, 戴 琳, 等. TFT-LCD基板玻璃化学组成的发展状况与展望[J]. 硅酸盐通报, 2010, 29(6): 1348-1352+1362. TIAN Y L, ZHANG L, DAI L, et al. Development and prospect of the compositions of TFT-LCD substrate glasses[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(6): 1348-1352+1362 (in Chinese). [7] 郭振强, 袁 坚, 淮旭光, 等. 柔性玻璃制备及加工技术进展[J]. 硅酸盐通报, 2020, 39(2): 585-591. GUO Z Q, YUAN J, HUAI X G, et al. Technical progress on preparation and processing of flexible glass[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 585-591 (in Chinese). [8] 姚文龙, 李 飞, 何怀胜, 等. 液晶玻璃基板溢流下拉法成型区析晶分析与对策[J]. 玻璃与搪瓷, 2019, 47(6): 45-49. YAO W L, LI F, HE H S, et al. Crystallization analysis and countermeasures in down-draw process for liquid crystal glass substrate[J]. Glass & Enamel, 2019, 47(6): 45-49 (in Chinese). [9] 邵宏根, 庞世红, 苑同锁, 等. 浮法玻璃成型过程中玻璃板厚方向温度场的数值模拟[J]. 硅酸盐通报, 2004, 23(4): 22-24. SHAO H G, PANG S H, YUAN T S, et al. Modeling of temperature depth profile of float glass in shaping process[J]. Bulletin of the Chinese Ceramic Society, 2004, 23(4): 22-24 (in Chinese). [10] 郑伟宏, 王玲玲, 张 谋, 等. 温度对柔性玻璃狭缝下拉成形过程的影响[J]. 硅酸盐通报, 2018, 37(9): 2935-2940. ZHENG W H, WANG L L, ZHANG M, et al. Effect of temperature on slit down-drawing method of flexible glass[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2935-2940 (in Chinese). [11] 闫 娜, 徐东勇, 刘史敏, 等. 康宁公司溢流下拉法制备超薄电子玻璃专利分析[C]//中硅会电子玻璃分会2014年光电子玻璃技术研讨会论文集. 深圳, 2014: 66-73. YAN N, XU D Y, LIU S M, et al. Patent analysis of the preparation of ultra-thin electronic glass by the overflow drawing method at kangning company[C]//Proceedings of the 2014 Optoelectronic Glass Technology Seminar of the China Silicon Association's Electronic Glass Branch. Shenzhen, 2014: 66-73 (in Chinese). [12] 彩虹集团(邵阳)特种玻璃有限公司. 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用: CN202010924058.0[P]. 2020-11-27. Caihong group (Shaoyang) Special Glass Co., Ltd. A high strength, low brittleness aluminosilicate glass and its strengthening method and application: CN202010924058.0[P]. 2020-11-27 (in Chinese). [13] 郑州旭飞光电科技有限公司. 一种液晶玻璃基板的生产方法: CN201610390360.6[P]. 2018-06-26. Zhengzhou Xufei Optoelectronic Technology Co., Ltd. A production method of liquid crystal glass substrate: CN201610390360.6[P]. 2018-06-26 (in Chinese). [14] LIN H J, CHANG W K. Design of a sheet forming apparatus for overflow fusion process by numerical simulation[J]. Journal of Non-Crystalline Solids, 2007, 353(30/31): 2817-2825. [15] HOU Y S, CHENG J S, KANG J F, et al. Effect of parameters of isopipe on the quality of glass sheet produced from overflow fusion process by numerical simulation[J]. MATEC Web of Conferences, 2017, 95: 10006. [16] 侯延升, 程金树, 康俊峰, 等. 高世代超薄玻璃面板溢流工艺的三维仿真模拟[J]. 硅酸盐学报, 2017, 45(1): 138-144. HOU Y S, CHENG J S, KANG J F, et al. 3D simulation of overflow process of advanced-generation ultra-thin glass sheet[J]. Journal of the Chinese Ceramic Society, 2017, 45(1): 138-144 (in Chinese). [17] 夏 宁, 杨金发, 张少波, 等. 柔性玻璃产业发展现状及发展趋势[J]. 建材世界, 2021, 42(5): 63-65+80. XIA N, YANG J F, ZHANG S B, et al. Development status and trend of UTG industry[J]. The World of Building Materials, 2021, 42(5): 63-65+80 (in Chinese). [18] LU J X, MA Y C. Numerical simulations for two-dimensional stochastic incompressible Navier-Stokes equations[J]. Numerical Methods for Partial Differential Equations, 2010, 26(1): 14-23. [19] CARELLI E, PROHL A. Rates of convergence for discretizations of the stochastic incompressible navier: stokes equations[J]. SIAM Journal on Numerical Analysis, 2012, 50(5): 2467-2496. [20] SOTIROPOULOS F, ABDALLAH S. The discrete continuity equation in primitive variable solutions of incompressible flow[J]. Journal of Computational Physics, 1991, 95(1): 212-227. [21] MOHAN A, TOMAR G. Volume of fluid method: a brief review[J]. Journal of the Indian Institute of Science, 2024, 104(1): 229-248. [22] 周慕姿, 杨爱玲, 陈二云. 浅球型凹坑表面对流场的影响[J]. 能源工程, 2018, 38(3): 26-31. ZHOU M Z, YANG A L, CHEN E Y. Effects of shallow spherical dimples surface on flow field[J]. Energy Engineering, 2018, 38(3): 26-31 (in Chinese). [23] TSUJIMURA H, KUBOTA K, SATO T. Applying surface tension as pressure boundary condition in free surface flow analysis by moving particle simulation method[J]. Computational Particle Mechanics, 2023, 10(5): 1445-1459. [24] AGARWAL S, UPADHYAY G, BHOSALE Y, et al. Density-contrast induced inertial forces on particles in oscillatory flows[J]. Journal of Fluid Mechanics, 2024, 985: A33. [25] SALDANA M, GALLEGOS S, GÁLVEZ E, et al. The Reynolds number: a journey from its origin to modern applications[J]. Fluids, 2024, 9(12): 299. |