欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (10): 3833-3843.DOI: 10.16552/j.cnki.issn1001-1625.2025.0416

• 玻璃 • 上一篇    下一篇

OLED显示玻璃溢流工艺成形数值模拟研究

郭宏伟1, 刘密1, 朱南沺1, 聂栋1, 杨海龙1, 翟梓良1, 赵志龙2   

  1. 1.陕西科技大学材料科学与工程学院,西安 710021;
    2.河南旭阳光电科技有限公司,安阳 455000
  • 收稿日期:2025-04-21 修订日期:2025-07-02 出版日期:2025-10-15 发布日期:2025-11-03
  • 作者简介:郭宏伟(1979—),男,副教授。主要从事电子玻璃与封装的研究。E-mail:03guohongwei@163.com
  • 基金资助:
    河南省重大科技专项(241100210200)

Numerical Simulation of OLED Display Glass Overflow Process Forming

GUO Hongwei1, LIU Mi1, ZHU Nantian1, NIE Dong1, YANG Hailong1, ZHAI Ziliang1, ZHAO Zhilong2   

  1. 1. School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China;
    2. Henan Xuyang Optoelectronic Technology Co., Ltd., Anyang 455000, China
  • Received:2025-04-21 Revised:2025-07-02 Published:2025-10-15 Online:2025-11-03

摘要: 溢流下拉法作为高世代有机发光二极管(OLED)显示玻璃成形的核心技术,其参数配置决定了玻璃液的流动行为及成形质量。本研究使用 Fluent 软件,系统探究了入口槽深、远端槽深及玻璃液密度对溢流过程中溢流面玻璃液厚度、速度分布、溢流槽内部速度场分布等的影响。结果表明:随着入口槽深的增加,近端玻璃液溢出量减少导致流速降低、厚度减小,而远端因动能积累提升速度与厚度;随着远端槽深的增加,远端玻璃液流量迅速增加,其速度与厚度显著增加,而近端玻璃液的速度与厚度减小;玻璃液密度的升高使近端玻璃液厚度与速度降低,但远端玻璃液厚度不变,速度升高。基于多参数协同调控,当玻璃液的黏度3 500 Pa·s、入口速度0.015 m/s、入口尺寸100 mm×100 mm、槽宽200 mm、壁厚50 mm 时,提出优化方案:入口槽深H=253 mm、远端槽深h=30 mm、玻璃液密度ρ=2 440 kg/m3。该方案可实现近远端间速度梯度平缓化,将厚度极差降至0.205 mm,为溢流槽设计与工艺优化提供理论依据。

关键词: 溢流成形, 数值模拟, 工艺参数, 工艺优化, 速度场, OLED显示玻璃

Abstract: As the core technology of the glass forming in high generation organic light-emitting diode (OLED) displays, the parameter configuration of the overflow downdrawing method determines the flow behavior of the glass liquid and the forming quality. In this study, the effects of inlet channel depth, distal channel depth and glass melt density on the thickness of glass liquid on the overflow surface, the velocity distribution and the velocity field distribution inside the overflow tank during the overflow process were systematically investigated using Fluent software. The results show that, with the increase of the inlet channel depth, the overflow of glass liquid at the proximal end decreases, leading to the reduction of flow velocity and thickness, while the velocity and thickness at the distal end are enhanced due to the accumulation of kinetic energy. With the increase of the distal channel depth, the flow of glass liquid at the distal end increases rapidly, and the velocity and thickness of the glass liquid increase significantly, while that of glass liquid at the proximal end decreases. The increase of the glass melt density makes the thickness and velocity of the glass liquid decrease at the proximal end, but the thickness and velocity of glass liquid remain unchanged and the velocity of glass liquid at the distal end increase. The increase of glass liquid density decreases the thickness and velocity of the proximal glass liquid, but the velocity of the distal glass liquid increases. Based on the multi-parameter synergistic control, when the inlet velocity is 0.015 m/s, the inlet is 100×100 mm, the tank width is 200 mm, and the wall thickness is 50 mm, the optimization scheme is proposed: the inlet tank depth H=253 mm, the distal tank depth h=30 mm, and the glass melt density ρ=2 440 kg/m3, which can achieve the smoothing of the velocity gradient between the near and far ends, and reduce the thickness difference to 0.205 mm, and provide theoretical support for the optimization of the design and process optimization of overflow trough.

Key words: overflow forming, numerical simulation, process parameter, process optimization, velocity field, OLED display glass

中图分类号: