[1] 傅金阳, 赵宁宁, 肖欧辉, 等. 寒区隧道洞口仰拱混凝土早期开裂机理研究[J]. 地下空间与工程学报, 2021, 17(4): 1298-1308. FU J Y, ZHAO N N, XIAO O H, et al. Cracking mechanism of fill concrete at entrance section in cold region[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(4): 1298-1308 (in Chinese). [2] 王川汶, 张玉星, 张 侠, 等. 交通工程建设中的纤维复合材料应用综述[J]. 合成材料老化与应用, 2024, 53(4): 104-107. WANG C W, ZHANG Y X, ZHANG X, et al. Overview of fiber composite materials application in transportation engineering construction[J]. Synthetic Materials Aging and Application, 2024, 53(4): 104-107 (in Chinese). [3] IQBAL S, ALI I, ROOM S, et al. Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers[J]. Materials and Structures, 2019, 52(3): 56. [4] LIU J L, JIA Y M, WANG J. Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete[J]. Fibers and Polymers, 2019, 20(9): 1900-1908. [5] GUO Z S, HAO N, WANG L M, et al. Review of basalt-fiber-reinforced cement-based composites in China: their dynamic mechanical properties and durability[J]. Mechanics of Composite Materials, 2019, 55(1): 107-120. [6] 范玉玉, 马芹永. 平板法研究层布式混杂纤维混凝土早期抗裂性能[J]. 地下空间与工程学报, 2013, 9(2): 444-450. FAN Y Y, MA Q Y. A slab test of early-age crack resistance of layered hybrid fiber reinforced concrete[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(2): 444-450 (in Chinese). [7] 郭寅川, 杨雪瑞, 申爱琴, 等. 湿热环境下玄武岩纤维桥面混凝土早期抗裂性[J]. 郑州大学学报(工学版), 2023, 44(6): 99-104+118. GUO Y C, YANG X R, SHEN A Q, et al. Early cracking resistance of basalt fibre bridge deck concrete in hot and humid environment[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(6): 99-104+118 (in Chinese). [8] MAO J W, LIANG N H, LIU X R, et al. Investigation on early-age cracking resistance of basalt-polypropylene fiber reinforced concrete in restrained ring tests[J]. Journal of Building Engineering, 2023, 70: 106155. [9] JIA M D, WU Z M, YU R C, et al. Residual fracture energy of concrete suffering from fatigue loading[J]. Engineering Fracture Mechanics, 2021, 255: 107956. [10] 皇 民, 陈 刚, 赵玉如. 弯曲荷载下玄武岩纤维混凝土疲劳寿命与韧性分析[J]. 河南理工大学学报(自然科学版), 2022, 41(1): 159-166+173. HUANG M, CHEN G, ZHAO Y R. Analysis on fatigue life and toughness of basalt fiber reinforced concrete under bending load[J]. Journal of Henan Polytechnic University (Natural Science), 2022, 41(1): 159-166+173 (in Chinese). [11] YANG J Y, GUO Y C, TAN J J, et al. Strength deterioration and crack dilation behavior of BFRC under dynamic fatigue loading[J]. Case Studies in Construction Materials, 2022, 16: e01051. [12] 郭献戌. 大温差环境下桥梁结构混凝土的温度响应及损伤研究[D]. 北京: 北京交通大学, 2022. GUO X X. Study on temperature response and damage of bridge structure concrete under large temperature difference environment[D]. Beijing: Beijing Jiaotong University, 2022 (in Chinese). [13] LI Z L, SHANG H B, XIAO S P, et al. Effect of thermal fatigue on mechanical properties and microstructure of concrete in constant ambient humidity[J]. Construction and Building Materials, 2023, 368: 130367. [14] LI Y, SHEN A Q, GUO Y C. Influence of basalt fibre on cracking behaviour and flexural toughness of concrete under the coupled effect of fatigue load and hydrodynamic pressure[J]. International Journal of Pavement Engineering, 2023, 24(2): 2147521. [15] 申爱琴. 水泥与水泥混凝土[M]. 北京: 人民交通出版社, 2000. SHEN A Q. Cement and cement concrete[M]. Beijing: China Communications Press, 2000 (in Chinese). [16] JANG J G, KIM H K, KIM T S, et al. Improved flexural fatigue resistance of PVA fiber-reinforced concrete subjected to freezing and thawing cycles[J]. Construction and Building Materials, 2014, 59: 129-135. [17] CAI J, JIANG H, ZHU Y, et al. Fatigue behavior of fiber reinforced self-compacting concrete under flexural load[J]. Technics Technologies Education Management-Ttem, 2010, 5(3): 426-430. [18] 徐 薄. 玄武岩纤维混凝土弯曲疲劳性能试验研究[D]. 昆明: 昆明理工大学, 2018. XU B. Experimental study on flexural fatigue behavior of basalt fiber reinforced concrete[D]. Kunming: Kunming University of Science and Technology, 2018 (in Chinese). [19] GUO Y C, PAN H M, SHEN A Q, et al. Fracture properties of basalt-fiber-reinforced bridge concrete under dynamic fatigue loading[J]. Structures, 2023, 56: 105018. [20] WITTMANN F H. On the action of capillary pressure in fresh concrete[J]. Cement and Concrete Research, 1976, 6(1): 49-56. [21] HEMALATHA T, RAMESH G. Mitigation of plastic shrinkage in fly ash concrete using basalt fibres[J]. Canadian Journal of Civil Engineering, 2019, 46(8): 759-769. [22] LADANI R B, WU S Y, KINLOCH A J, et al. Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibres[J]. Composites Science and Technology, 2017, 149: 116-126. [23] ZHANG C S, WANG Y Z, ZHANG X G, et al. Mechanical properties and microstructure of basalt fiber-reinforced recycled concrete[J]. Journal of Cleaner Production, 2021, 278: 123252. [24] 杨碧成. 纤维混凝土早期塑性开裂试验及其阻裂机理研究[D]. 大连: 大连理工大学, 2017. YANG B C. Experimental study and mechanism of cracking resistance research on the early plastic cracking of fiber reinforced concrete[D]. Dalian: Dalian University of Technology, 2017 (in Chinese). [25] LIAN H H, SUN X J, YU Z P, et al. Research on the fracture mechanical performance of basalt fiber nano-CaCO3 concrete based on DIC technology[J]. Construction and Building Materials, 2022, 329: 127193. [26] LYU Z H, SHEN A Q, LI Y, et al. Experimental and numerical investigation on mechanical behaviour and moisture transport of pavement concrete under fatigue load and hydrodynamic coupling[J]. Road Materials and Pavement Design, 2022, 23(7): 1585-1604. [27] 关博文. 交变荷载与硫酸盐腐蚀作用下水泥混凝土疲劳损伤机制[D]. 西安: 长安大学, 2012. GUAN B W. Study on the fatigue damage of cement concrete subjected to sulfate corrosion and alternating stresses[D]. Xi'an: Chang'an University, 2012 (in Chinese). [28] YAN P, CHEN B, AFGAN S, et al. Experimental research on ductility enhancement of ultra-high performance concrete incorporation with basalt fibre, polypropylene fibre and glass fibre[J]. Construction and Building Materials, 2021, 279: 122489. [29] 高 鹏, 储圣洁, 韦海涛, 等. 束状玄武岩纤维增强混凝土力学性能试验研究[J/OL]. 复合材料学报, 2024: 1-13 (2024-11-25)[2025-06-15]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20241121002&dbname=CJFD&dbcode=CJFQ. GAO P, CHU S J, WEI H T, et al. Experimental study on mechanical properties of bundled basalt fiber reinforced concrete[J/OL]. Acta Materiae Compositae Sinica, 2024: 1-13 (2024-11-25)[2025-06-15]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20241121002&dbname=CJFD&dbcode=CJFQ (in Chinese). [30] HAN W W, WU S Y, GAO X, et al. Experimental and numerical study on fracture characteristics of interface between in situ engineered cementitious composites and steel deck[J]. Advances in Materials Science and Engineering, 2021, 2021(1): 6653516. [31] YANG X L, SHEN A Q, GUO Y C, et al. Deterioration mechanism of interface transition zone of concrete pavement under fatigue load and freeze-thaw coupling in cold climatic areas[J]. Construction and Building Materials, 2018, 160: 588-597. [32] LI F P, CHEN D F, LU Y Y, et al. Influence of mixed fibers on fly ash based geopolymer resistance against freeze-thaw cycles[J]. Journal of Non-Crystalline Solids, 2022, 584: 121517. |