[1] MIRTCHI A A, LEMAITRE J, TERAO N. Calcium phosphate cements: study of the β-tricalcium phosphate: monocalcium phosphate system[J]. Biomaterials, 1989, 10(7): 475-480. [2] MIRTCHI A A, LEMAÎTRE J, MUNTING E. Calcium phosphate cements: effect of fluorides on the setting and hardening of beta-tricalcium phosphate-dicalcium phosphate-calcite cements[J]. Biomaterials, 1991, 12(5): 505-510. [3] ZHOU H, LUCHINI T J F, AGARWAL A K, et al. Development of monetite-nanosilica bone cement: a preliminary study[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2014, 102(8): 1620-1626. [4] KIM S Y, JEON S H. Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 128-136. [5] WANG C, HUANG W, ZHOU Y, et al. 3D printing of bone tissue engineering scaffolds[J]. Bioactive Materials, 2020, 5(1): 82-91. [6] SHU Y, ZHOU Y, MA P W, et al. Degradation in vitro and in vivo of β-TCP/MCPM-based premixed calcium phosphate cement[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 86-95. [7] 祁 燕, 汪 涛, 杨 心, 等. 螯合型羟基磷灰石骨水泥的制备[J]. 硅酸盐通报, 2016, 35(2): 496-499. QI Y, WANG T, YANG X, et al. Fabrication of chelating hydroxyapatite cement[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(2): 496-499 (in Chinese). [8] NIE Y P, WANG T, WU M, et al. Characterization of a high strength hydroxyapatite cement with dual chelate-setting using phytic acid and citric acid[J]. International Journal of Applied Ceramic Technology, 2022, 19(3): 1498-1510. [9] PENG J H, QU J D, ZHANG J X, et al. Adsorption characteristics of water-reducing agents on gypsum surface and its effect on the rheology of gypsum plaster[J]. Cement and Concrete Research, 2005, 35(3): 527-531. [10] 刘 琳, 孔祥东, 李玉成, 等. 预处理对丝素蛋白膜调控羟基磷灰石晶体生长的影响[J]. 高等学校化学学报, 2009, 30(10): 1987-1991. LIU L, KONG X D, LI Y C, et al. Effect of pretreated silk fibroin films on the regulation of hydroxyapatite crystal growth[J]. Chemical Journal of Chinese Universities, 2009, 30(10): 1987-1991 (in Chinese). [11] SAMAVEDI S, WHITTINGTON A R, GOLDSTEIN A S. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior[J]. Acta Biomaterialia, 2013, 9(9): 8037-8045. [12] TAMIMI F, SHEIKH Z, BARRALET J. Dicalcium phosphate cements: brushite and monetite[J]. Acta Biomaterialia, 2012, 8(2): 474-487. [13] MIRTCHI A A, LEMAÎTRE J, MUNTING E. Calcium phosphate cements: action of setting regulators on the properties of the beta-tricalcium phosphate-monocalcium phosphate cements[J]. Biomaterials, 1989, 10(9): 634-638. [14] HUAN Z G, CHANG J. Novel bioactive composite bone cements based on the β-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system[J]. Acta Biomaterialia, 2009, 5(4): 1253-1264. [15] ZHOU Z X, BUCHANAN F, MITCHELL C, et al. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique[J]. Materials Science & Engineering C, Materials for Biological Applications, 2014, 38: 1-10. [16] MARTÍNEZ-VÁZQUEZ F J, CABAÑAS M V, PARIS J L, et al. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration[J]. Acta Biomaterialia, 2015, 15: 200-209. [17] SAHMANI S, KHANDAN A, ESMAEILI S, et al. Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: fabrication, characterization and simulation[J]. Ceramics International, 2020, 46(2): 2447-2456. |