硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (9): 3479-3493.
陈峰1, 仪珂2, 王朝辉2, 党武娟1, 屈希峰1
收稿日期:
2024-02-01
修订日期:
2024-04-01
出版日期:
2024-09-15
发布日期:
2024-09-19
通信作者:
王朝辉,博士,教授。E-mail:wchh0205@chd.edu.cn
作者简介:
陈 峰(1973—),男,高级工程师。主要从事道路工程的研究。E-mail:cf4370043730@163.com
基金资助:
CHEN Feng1, YI Ke2, WANG Chaohui2, DANG Wujuan1, QU Xifeng1
Received:
2024-02-01
Revised:
2024-04-01
Published:
2024-09-15
Online:
2024-09-19
摘要: 为进一步提升路面半刚性基层抗裂性,促进纤维水泥稳定基层材料应用与发展,本文系统梳理了水泥稳定基层用纤维类型及其物化特性,厘定了水泥稳定基层用纤维适宜长度及掺量,对比评价了不同类型纤维水泥稳定基层力学性能和变形特性,并进一步分析了纤维水泥稳定基层增韧抗裂机理。结果表明:聚酯纤维长度及掺量最大,分别集中于15~50 mm、0.06%~0.08%(质量分数);经纤维改性后水泥稳定基层力学性能及变形特性明显改善,其中,聚乙烯醇(PVA)纤维水泥稳定基层28 d无侧限抗压强度提升程度达6%~34%,聚丙烯纤维水泥稳定基层及PVA纤维水泥稳定基层28 d劈裂强度提升程度均值分别为30%、18%;此外,聚丙烯纤维对水泥稳定基层28 d干缩系数改善效果最优,可降低18%~37%,而PVA纤维水泥稳定基层28 d温缩系数降低程度均值为23%,90 d龄期温缩系数降低程度集中于6%~22%,均处于较高水平;分析纤维水泥稳定基层材料增韧原理可知,纤维主要通过桥接作用削弱基层内部应力集中现象,延缓裂缝发展。
中图分类号:
陈峰, 仪珂, 王朝辉, 党武娟, 屈希峰. 纤维改性水泥基材料研究进展:水泥稳定基层[J]. 硅酸盐通报, 2024, 43(9): 3479-3493.
CHEN Feng, YI Ke, WANG Chaohui, DANG Wujuan, QU Xifeng. Research Progress of Fiber Modified Cement-Based Materials: Cement Stabilized Base[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(9): 3479-3493.
[1] ZHU L H, NING Q, HAN W, et al. Compressive strength and microstructural analysis of recycled coarse aggregate concrete treated with silica fume[J]. Construction and Building Materials, 2022, 334: 127453. [2] LIU L Q, WANG C H, LIANG Q, et al. A state-of-the-art review of rubber modified cement-based materials: cement stabilized base[J]. Journal of Cleaner Production, 2023, 392: 136270. [3] 贾明皓, 肖学良, 钱 坤. 玄武岩纤维及其增强水泥基复合材料研究进展[J]. 硅酸盐通报, 2018, 37(11): 3467-3474. JIA M H, XIAO X L, QIAN K. Research progress in basalt fiber and its reinforced cement-based composites[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3467-3474 (in Chinese). [4] 郭寅川, 刘逸伟, 申爱琴, 等. 玻璃纤维水泥稳定碎石收缩及柔化抗裂性能研究[J]. 郑州大学学报(工学版), 2023, 44(5): 114-120. GUO Y C, LIU Y W, SHEN A Q, et al. Research on shrinkage and softening crack resistance of glass fiber cement stabilized macadam[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 114-120 (in Chinese). [5] ZHAO C H, LIANG N X, ZHU X L, et al. Fiber-reinforced cement-stabilized macadam with various polyvinyl alcohol fiber contents and lengths[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020312. [6] 俞靖洋, 梁乃兴, 童 攀, 等. 聚乙烯醇纤维水泥稳定碎石基层疲劳寿命分析[J]. 硅酸盐通报, 2019, 38(8): 2408-2413+2419. YU J Y, LIANG N X, TONG P, et al. Fatigue life analysis of polyvinyl alcohol fiber modified cement stability macadam base pavement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2408-2413+2419 (in Chinese). [7] LI C G, ZHOU H, GUO C M. Influence of basalt fiber on mechanical properties of permeable cement stabilized macadam base[J]. IOP Conference Series: Earth and Environmental Science, 2021, 651(3): 032004. [8] 薛振华, 关博文, 樊兴华. 掺玄武岩纤维水泥稳定再生碎石基层性能研究[J]. 中外公路, 2021, 41(5): 269-273. XUE Z H, GUAN B W, FAN X H. Research on road performance of cement stabilized reclaimed gravel base mixed with basalt fiber[J]. Journal of China & Foreign Highway, 2021, 41(5): 269-273 (in Chinese). [9] LIU Z J, WANG D Q, WEI X B, et al. Impact of fiber diameter on-road performanceof cement-stabilized macadam[J]. The Baltic Journal of Road and Bridge Engineering, 2017, 12(1): 12-20. [10] 房英锋. 聚酯纤维和振动搅拌工艺对水泥稳定碎石的路用性能影响规律研究[J]. 中外公路, 2019, 39(6): 244-248. FANG Y F. Study on influence of polyester fiber and vibration stirring process on road performance of cement stabilized macadam[J]. Journal of China & Foreign Highway, 2019, 39(6): 244-248 (in Chinese). [11] 付春梅, 齐善忠. 聚酯纤维和聚丙烯纤维水泥稳定碎石力学性能研究[J]. 公路, 2015, 60(1): 37-42. FU C M, QI S Z. Study on mechanical properties of polyester fiber and polypropylene fiber cement stabilized macadam[J]. Highway, 2015, 60(1): 37-42 (in Chinese). [12] 宋金华, 徐传良. 纤维增强水泥稳定不同骨料性能试验研究[J]. 公路, 2022, 67(2): 237-241. SONG J H, XU C L. Experimental study on properties of different aggregates stabilized by fiber reinforced cement[J]. Highway, 2022, 67(2): 237-241 (in Chinese). [13] ZHANG C, WU W, CHEN R J. Experimental study on the deformation performance of cement-stabilized macadam reinforced with fiber[J]. Advanced Materials Research, 2011, 335/336: 391-395. [14] SON M, KIM G, KIM H, et al. Effects of the strain rate and fiber blending ratio on the tensile behavior of hooked steel fiber and polyvinyl alcohol fiber hybrid reinforced cementitious composites[J]. Cement and Concrete Composites, 2020, 106: 103482. [15] ROSTAMI R, ZARREBINI M, MANDEGARI M, et al. The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties[J]. Cement and Concrete Composites, 2018, 97: 118-124. [16] OTIENO O A, ZAKARIA H. The influence of basalt fiber filament length on shear strength development of chemically stabilized soils for ground improvement[J]. Construction and Building Materials, 2023, 374: 130930. [17] LIU Z J. Experimental research on the engineering characteristics of polyester fiber-reinforced cement-stabilized macadam[J]. Journal of Materials in Civil Engineering, 2015, 27(10): 04015004. [18] 刘 纪, 黄丽平, 李秀君, 等. 聚丙烯纤维对高寒地区水稳基层冷再生混合料性能的影响[J]. 上海理工大学学报, 2021, 43(5): 460-467. LIU J, HUANG L P, LI X J, et al. Effect of polypropylene fiber on properties of cold recycled mixture of water stabilized base course in alpine region[J]. Journal of University of Shanghai for Science and Technology, 2021, 43(5): 460-467 (in Chinese). [19] 贺亚飞. 掺聚乙烯醇(PVA)纤维水泥稳定碎石的力学及抗裂性能研究[D]. 重庆: 重庆交通大学, 2016. HE Y F. Study on mechanical properties and cracking resistance of the cement-stabilized macadam mixed with polyvinyl alcohol(PVA) fiber[D]. Chongqing: Chongqing Jiaotong University, 2016 (in Chinese). [20] ZHAO Y, YANG X, ZHANG Q Y, et al. Crack resistance and mechanical properties of polyvinyl alcohol fiber-reinforced cement-stabilized macadam base[J]. Advances in Civil Engineering, 2020, 2020: 6564076. [21] 熊延华, 屈会朋, 阳应荣, 等. 聚乙烯醇纤维水泥稳定碎石的疲劳性能研究[J]. 硅酸盐通报, 2022, 41(10): 3493-3500. XIONG Y H, QU H P, YANG Y R, et al. Fatigue properties of polyvinyl alcohol fiber cement stabilized crushed stone[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3493-3500 (in Chinese). [22] 曹源文, 赵 毅, 王 棋, 等. PVA纤维水泥稳定碎石拌和均匀性研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(5): 29-33. CAO Y W, ZHAO Y, WANG Q, et al. Mixing uniformity of cement stabilized macadam with PVA fiber[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(5): 29-33 (in Chinese). [23] 袁龄卿, 梁乃兴, 赵春花, 等. PVA纤维分散程度对水泥砂浆和水泥稳定碎石力学性能的影响[J]. 建筑材料学报, 2021, 24(5): 921-929. YUAN L Q, LIANG N X, ZHAO C H, et al. Effect of PVA fibers dispersion on mechanical properties of cement mortar and cement stabilized macadam[J]. Journal of Building Materials, 2021, 24(5): 921-929 (in Chinese). [24] 石飞虎. 市政道路施工中聚乙烯醇纤维增强水泥稳定碎石基层的质量控制[J]. 江西建材, 2016(23): 143. SHI F H. Quality control of polyvinyl alcohol fiber reinforced cement stabilized macadam base in municipal road construction[J]. Jiangxi Building Materials, 2016(23): 143 (in Chinese). [25] 王世鹏. 聚乙烯醇纤维水泥稳定碎石材料路用性能研究[D]. 重庆: 重庆交通大学, 2016. WANG S P. PVA fiber cement stabilized gravel road use performance study[D]. Chongqing: Chongqing Jiaotong University, 2016 (in Chinese). [26] TAN S Y, WANG C H, ZHENG Q, et al. Durability performance of PVA fiber cement-stabilized macadam[J]. Sustainability, 2022, 14(24): 16953. [27] YUAN L Q, LIANG N X, ZHAO C H. Analysis on influence of the dispersion degree of PVA fibers on pavement performance of cement-stabilized macadam[J]. Advances in Civil Engineering, 2019, 2019: 5127015. [28] 董 飞. 掺废橡胶粉纤维水泥稳定碎石抗裂性能研究[D]. 南京: 东南大学, 2018. DONG F. Study on crack resistance of cement stabilized macadam mixed with waste rubber powder and fiber[D]. Nanjing: Southeast University, 2018 (in Chinese). [29] 胡 希. 橡胶聚乙烯醇纤维复合改性水泥稳定碎石性能研究[D]. 长沙: 长沙理工大学, 2018. HU X. Study on properties of cement stabilized macadam modified by rubber polyvinyl alcohol fiber composite[D]. Changsha: Changsha University of Science & Technology, 2018 (in Chinese). [30] 王文彬. 不同纤维增强水泥稳定碎石混合料路用性能与耐久性研究[J]. 新型建筑材料, 2021, 48(3): 57-62. WANG W B. Study on road performance and durability of different fiber reinforced cement stabilized crushed stone mixture[J]. New Building Materials, 2021, 48(3): 57-62 (in Chinese). [31] 乌日乐. 聚乙烯醇纤维水泥稳定碎石路用性能研究[D]. 西安: 长安大学, 2020. WU R L. Research on road performance of polyvinyl alcohol fiber cement stabilized crushed stone[D]. Xi'an: Changan University, 2020 (in Chinese). [32] 赵志惠. 掺纤维水泥稳定碎石的性能研究及生产应用[D]. 苏州: 苏州科技大学, 2017. ZHAO Z H. Performance study and production application of cement stabilized crushed stone mixed with fiber[D]. Suzhou: Suzhou University of Science and Technology, 2017 (in Chinese). [33] 王 静, 李东一, 张云龙. 不同纤维处理水泥稳定粉砂土的三轴试验力学特性研究[J]. 吉林建筑大学学报, 2022, 39(2): 17-22. WANG J, LI D Y, ZHANG Y L. Study on mechanical properties of cemented sand treated with different fibers by triaxial test[J]. Journal of Jilin Jianzhu University, 2022, 39(2): 17-22 (in Chinese). [34] 雷 蕾, 姜 慧, 顾 万, 等. 外掺剂改良再生水泥稳定碎石基层材料试验研究[J]. 公路, 2022, 67(2): 31-37. LEI L, JIANG H, GU W, et al. Research on recycled cement stabilized crushed stone base material improved with admixtures[J]. Highway, 2022, 67(2): 31-37 (in Chinese). [35] 姜 屏, 杨建冬, 李 娜, 等. 纤维改性水泥稳定铁尾矿砂的无侧限抗压性能研究[J]. 复合材料科学与工程, 2021(8): 73-79. JIANG P, YANG J D, LI N, et al. Unconfined compressive properties of fiber modified cement stabilized iron tailings[J]. Composites Science and Engineering, 2021(8): 73-79 (in Chinese). [36] 王佐洲. 掺入聚丙烯纤维水泥稳定碎石材料性能试验研究[J]. 市政技术, 2021, 39(3): 139-142+152. WANG Z Z. Experimental study on material performance of cement stabilized macadam with polypropylene fiber[J]. Municipal Engineering Technology, 2021, 39(3): 139-142+152 (in Chinese). [37] 李艳春, 李 侠, 张 攀. 膨胀剂及纤维对水泥稳定碎石干缩性能的影响[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(2): 246-249. LI Y C, LI X, ZHANG P. Effect of expansive additive and fibers on the shrinkage properties of cement stabilized macadam mixed[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2013, 37(2): 246-249 (in Chinese). [38] 何小兵, 杨庆国, 何国基. 聚丙烯纤维增强水泥稳定碎石基层材料的抗冲刷性能[J]. 建筑材料学报, 2010, 13(2): 263-267+276. HE X B, YANG Q G, HE G J. Anti-erosion property of polypropylene fiber reinforced cement-stabilized macadam base material[J]. Journal of Building Materials, 2010, 13(2): 263-267+276 (in Chinese). [39] 张 鹏, 刘晨辉, 李清富. 聚丙烯纤维水泥稳定碎石力学性能试验研究[J]. 郑州大学学报(工学版), 2010, 31(5): 44-47. ZHANG P, LIU C H, LI Q F. Experimental study on mechanical properties of cement stabilized crushed stones reinforced with polypropylene fiber[J]. Journal of Zhengzhou University (Engineering Science), 2010, 31(5): 44-47 (in Chinese). [40] 马银华, 张 广, 易志坚, 等. 聚丙烯纤维半刚性基层材料弯曲韧性试验研究[J]. 重庆交通大学学报(自然科学版), 2007, 26(4): 57-59+77. MA Y H, ZHANG G, YI Z J, et al. Experimental research on flexural toughness of semi-rigid base mixed into polypropylene fiber[J]. Journal of Chongqing Jiaotong University (Natural Science), 2007, 26(4): 57-59+77 (in Chinese). [41] MA Y H, GU J Y, LI Y, et al. The bending fatigue performance of cement-stabilized aggregate reinforced with polypropylene filament fiber[J]. Construction and Building Materials, 2015, 83: 230-236. [42] ZHANG X D, GENG J, PANG S, et al. Microscopic properties and splitting tensile strength of fiber-modified cement-stabilized aeolian sand[J]. Journal of Materials in Civil Engineering, 2023, 35(6): 15187. [43] 吴启一. 玄武岩纤维对水泥稳定碎石性能影响研究[D]. 合肥: 合肥工业大学, 2022. WU Q Y. Effect of basalt fiber on properties of cement stabilized macadam[D]. Hefei: Hefei University of Technology, 2022 (in Chinese). [44] 张清峰, 张昌伟, 林 雄, 等. 玄武岩纤维改性透水水泥稳定碎石试验研究[J]. 铁道工程学报, 2020, 37(7): 18-22. ZHANG Q F, ZHANG C W, LIN X, et al. Experimental research on the modified permeable cement stabilized macadam with basalt fiber[J]. Journal of Railway Engineering Society, 2020, 37(7): 18-22 (in Chinese). [45] 田小革, 于 水, 李光耀, 等. 不同措施对水泥稳定碎石混合料性能的影响[J]. 硅酸盐通报, 2022, 41(7): 2235-2243. TIAN X G, YU S, LI G Y, et al. Effects of different measures on performance of cement stabilized macadam mixture[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2235-2243 (in Chinese). [46] 张燕红. 粗集料形态特征及玄武岩纤维对水稳碎石强度的影响研究[D]. 昆明: 昆明理工大学, 2022. ZHANG Y H. Study on morphological characteristics of coarse aggregate and influence of basalt fiber on strength of water-stabilized macadam[D]. Kunming: Kunming University of Science and Technology, 2022 (in Chinese). [47] 孟钦龙. 掺加玄武岩纤维的水泥稳定再生砖骨料基层路用性能研究[D]. 郑州: 华北水利水电大学, 2019. MENG Q L. Study on road performance of cement sabilized recycled brick aggregate base with adding basalt fiber[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019 (in Chinese). [48] 焦双健, 李 淑, 陈玉娇. 玄武岩纤维水泥稳定碎石配合比试验研究[J]. 混凝土与水泥制品, 2014(3): 49-53. JIAO S J, LI S, CHEN Y J. Experimental study on mix proportion of cement stabilized macadam reinforced with basalt fiber[J]. China Concrete and Cement Products, 2014(3): 49-53 (in Chinese). [49] SAHLABADI S, BAYAT M, MOUSIVAND M, et al. Freeze-thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers[J]. Journal of Materials in Civil Engineering, 2021, 33(9): 04021232. [50] IORIO M, MARRA F, SANTARELLI M L, et al. Reinforcement-matrix interactions and their consequences on the mechanical behavior of basalt fibers-cement composites[J]. Construction and Building Materials, 2021, 309: 125103. [51] WANG D X, WANG H W, LARSSON S, et al. Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite[J]. Construction and Building Materials, 2020, 241: 118085. [52] YAN J C, MA Y P, ZHANG X, et al. Analysis of frost resistance of basalt fiber cement solidified aeolian sand subgrade[J]. Journal of Physics: Conference Series, 2020, 1654(1): 012118. [53] ZHENG Y X, ZHANG P, CAI Y C, et al. Cracking resistance and mechanical properties of basalt fibers reinforced cement-stabilized macadam[J]. Composites Part B: Engineering, 2019, 165: 312-334. [54] OTIENO OWINO A, NAHAR N, HOSSAIN Z, et al. Dimensional influence of basalt fiber reinforcements on the consolidation behaviour of rice husk ash stabilized soils[J]. Construction and Building Materials, 2022, 339: 127686. [55] 付春梅, 施小明. 聚酯纤维水泥稳定碎石抗裂性能试验研究[J]. 路基工程, 2012(3): 77-80. FU C M, SHI X M. Experimental study on anti-cracking performance of polyester-fiber cement-stabilized macadam[J]. Subgrade Engineering, 2012(3): 77-80 (in Chinese). [56] 韦小碧. 聚酯纤维径变对水泥稳定碎石收缩及力学性能影响研究[D]. 徐州: 中国矿业大学, 2018. WEI X B. Impact of polyester fiber diameter shrinkage and mechanics performance of cement-stabilized macadam[D]. Xuzhou: China University of Mining and Technology, 2018 (in Chinese). [57] 赵文姣, 薛金顺, 于远征. 聚酯纤维对水泥稳定碎石回弹模量影响[J]. 公路交通科技(应用技术版), 2014, 10(5): 89-91. ZHAO W J, XUE J S, YU Y Z. Influence of polyester fiber on resilience modulus of cement stabilized macadam[J]. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2014, 10(5): 89-91 (in Chinese). [58] 王建国, 李海波, 虞金金. 聚酯纤维对水泥稳定碎石回弹模量影响的试验研究[J]. 天津建设科技, 2011, 21(3): 46-48. WANG J G, LI H B, YU J J. Experimental study on the influence of polyester fiber on rebound modulus of cement stabilized macadam[J]. Tianjin Construction Science and Technology, 2011, 21(3): 46-48 (in Chinese). [59] 侯兆军, 冯立群, 李林萍. 聚酯纤维增强型水泥稳定砂砾抗压强度试验研究[J]. 重庆交通大学学报(自然科学版), 2014, 33(1): 55-59. HOU Z J, FENG L Q, LI L P. Compression strength of stabilized gravel in cement strengthened with polyester fiber[J]. Journal of Chongqing Jiaotong University (Natural Science), 2014, 33(1): 55-59 (in Chinese). [60] 许 鹏, 卢明智, 王 楹. 纤维增强水泥稳定碎石路用性能研究[J]. 公路交通科技(应用技术版), 2017, 13(9): 106-108. XU P, LU M Z, WANG Y. Study on road performance of fiber reinforced cement stabilized macadam[J]. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2017, 13(9): 106-108 (in Chinese). [61] 郭立成, 曾国东, 周 敏, 等. 聚酯纤维增强水泥稳定再生骨料性能试验研究[J]. 中外公路, 2021, 41(1): 232-236. GUO L C, ZENG G D, ZHOU M, et al. The experimental study on properties of polyester fiber reinforced cement stabilized recycled aggregate[J]. Journal of China & Foreign Highway, 2021, 41(1): 232-236 (in Chinese). [62] 许云龙. 水泥稳定再生混合料性能及路面结构力学响应研究[D]. 兰州: 兰州交通大学, 2020. XU Y L. Research on performance of cement stabilized recycled mixture and mechanical response of pavement structure with it[D]. Lanzhou: Lanzhou Jiaotong University, 2020 (in Chinese). [63] 任海洋. 玻璃-聚酯混掺纤维水泥稳定碎石收缩性能研究[J]. 公路交通科技(应用技术版), 2018, 14(11): 90-93. REN H Y. Study on shrinkage performance of glass-polyester fiber cement stabilized macadam[J]. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2018, 14(11): 90-93 (in Chinese). [64] WANG J, LI M, CHEN J C, et al. Investigation on shrinkage characteristics of polyester-fiber-reinforced cement-stabilized concrete considering fiber length and content[J]. Buildings, 2023, 13(4): 1027. [65] LI Q H, LIU L L, LI Y S, et al. Effect of fiber on mechanical properties of cement stabilized macadam mixture[J]. Journal of Physics: Conference Series, 2021, 2044(1): 012045. [66] LV C, LIU Z J. Experimental study on influence of polyester fibre on temperature shrinkage performance of cement-stabilized macadam[C]//2011 International Conference on Electric Technology and Civil Engineering (ICETCE). Lushan, China. IEEE, 2011: 2208-2210. [67] 徐建成. 掺聚丙烯纤维的水泥稳定碎石在市政道路中的应用研究[D]. 扬州: 扬州大学, 2012. XU J C. The research on the cement-stabilized aggregate mixtures adding polypropylene fiber applied to municipal roads[D]. Yangzhou: Yangzhou University, 2012 (in Chinese). [68] 赵云飞. 纤维对水泥稳定碎石材料性能影响的实验研究[D]. 合肥: 合肥工业大学, 2021. ZHAO Y F. Experimental study on effect of fiber on properties of cement stabilized macadam[D]. Hefei: Hefei University of Technology, 2021 (in Chinese). [69] 赵 宁, 孙洪德. 掺纤维水泥稳定砂砾材料路用性能研究[J]. 混凝土世界, 2013(2): 94-98. ZHAO N, SUN H D. Study on road performance of fiber-doped cement stabilized gravel material[J]. China Concrete, 2013(2): 94-98 (in Chinese). [70] 张 虹. 聚丙烯纤维在水稳碎石基层中的应用[J]. 交通科学与工程, 2019, 35(1): 20-24. ZHANG H. Application of polypropylene fiber in the cement-stabilized macadam base[J]. Journal of Transport Science and Engineering, 2019, 35(1): 20-24 (in Chinese). [71] LI Z X, CHEN Y Z, MENG Q L, et al. Study on pavement performance of cement stabilized recycled brick aggregate base with basalt fiber[J]. Advances in Materials Science and Engineering, 2022, 2022: 2347736. [72] 甄少华. 水泥稳定碎石基层材料耐久性提升技术研究[D]. 长沙: 长沙理工大学, 2019. ZHEN S H. Study on durability improvement technology of cement stabilized macadam base material[D].Changsha: Changsha University of Science & Technology, 2019 (in Chinese). [73] 李 淑. 玄武岩纤维水泥稳定碎石路用性能试验研究[D]. 青岛: 中国海洋大学, 2014. LI S. Experimental study on pavement performance of basalt fiber cement stabilized macadam[D]. Qingdao: Ocean University of China, 2014 (in Chinese). [74] 鲁子煜, 马海龙, 王 锐, 等. 玄武岩纤维水稳碎石抗压强度影响因素分析[J]. 低温建筑技术, 2021, 43(5): 34-37. LU Z Y, MA H L, WANG R, et al. Analysis on influencing factors of compressive strength of cement stabilized macadam mixed with basalt fiber[J]. Low Temperature Architecture Technology, 2021, 43(5): 34-37 (in Chinese). [75] 邹啟东, 徐良军, 金 鑫, 等. 玄武岩纤维对水泥稳定铣刨料抗压强度和干缩性能的影响[J]. 山东理工大学学报(自然科学版), 2021, 35(2): 31-37. ZOU Q D, XU L J, JIN X, et al. Effect of basalt fiber on compressive strength and dry shrinkage of cement stabilized milling material[J]. Journal of Shandong University of Technology (Natural Science Edition), 2021, 35(2): 31-37 (in Chinese). [76] 杨晨筱. 掺纤维水泥稳定再生集料的路用性能分析[J]. 福建交通科技, 2022(11): 56-59. YANG C X. Analysis of road performance of stabilized recycled aggregate with fiber cement[J]. Fujian Transportation Technology, 2022(11): 56-59 (in Chinese). [77] 杨 明. 玄武岩—聚丙烯混杂纤维水稳碎石基层的路用性能研究[D]. 西安: 长安大学, 2017. YANG M. Study on the road performance of basalt-polypropylene hybrid cement stabilized gravel[D]. Xi'an: Chang'an University, 2017 (in Chinese). [78] 张泽川. 纤维水泥稳定碎石基层路用性能试验研究[D]. 合肥: 合肥工业大学, 2020. ZHANG Z C. Experimental study on road performance of fiber cement stabilized macadam base[D]. Hefei: Hefei University of Technology, 2020 (in Chinese). [79] 韩宇聪. 寒冷地区纤维混凝土力学性能及其在地铁车站工程应用研究[D]. 济南: 山东大学, 2023. HAN Y C. Study on mechanical properties of fiber reinforced concrete in cold regions and its application in metro station engineering[D]. Jinan: Shandong University, 2023 (in Chinese). [80] 陈 亮. 纤维水泥基复合材料性能及分子动力学模拟[J]. 山西建筑, 2023, 49(8): 128-132. CHEN L. Mechanical properties and interfacial molecular dynamics simulation of fiber-cement composites[J]. Shanxi Architecture, 2023, 49(8): 128-132 (in Chinese). [81] 林 笑. 混杂纤维混凝土力学性能对比试验研究[D]. 西安: 长安大学, 2021. LIN X. Comparative experimental study on mechanical properties of hybrid fiber reinforced concrete[D]. Xi'an: Chang'an University, 2021 (in Chinese). [82] 雷鸣宇. 机场道面纤维混凝土的性能评价及应用研究[D]. 西安: 长安大学, 2022. LEI M Y. Study on erformance evaluation and application of fiber concrete for airport road surface[D]. Xi'an: Chang'an University, 2022 (in Chinese). |
[1] | 赵国庆, 杨进波, 尹航. C-S-H凝胶无定型纳米孔隙中NaCl蒸发结晶分子动力学分析[J]. 硅酸盐通报, 2024, 43(9): 3173-3181. |
[2] | 赵燕茹, 龙思睿, 白建文, 刘明. 高温后风积沙混凝土力学性能与微观结构试验研究[J]. 硅酸盐通报, 2024, 43(9): 3182-3191. |
[3] | 张震洋, 张璐, 伊海赫, 郑润, 马克顺, 张琳, 任梦琪, 王春光. 基于响应面法的地聚物混凝土力学性能试验研究[J]. 硅酸盐通报, 2024, 43(9): 3192-3202. |
[4] | 王萧萧, 董培森, 杨鑫瑞, 张菊, 闫长旺, 董宇飞. 低温作用下钢纤维地聚合物混凝土力学性能研究[J]. 硅酸盐通报, 2024, 43(9): 3203-3213. |
[5] | 黄斌, 龚明子, 潘阿馨, 饶先鹏, 王涛, 陈晨, 黄伟. 减水剂与钢纤维对超高性能混凝土流变及力学性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3214-3223. |
[6] | 王浩, 谭盐宾, 刘星, 杨鲁, 元强, 谢斌福, 刘博. 火成岩质矿物材料对混凝土性能的影响[J]. 硅酸盐通报, 2024, 43(9): 3244-3251. |
[7] | 李艳艳, 杜晓丽, 王浩伟, 徐锴. 硅灰-聚丙烯纤维双掺混凝土的动静态力学性能[J]. 硅酸盐通报, 2024, 43(9): 3320-3329. |
[8] | 崔莹莹, 何健辉, 吕民望, 杨露, 刘云鹏. 可完全循环水泥砂浆配料制备贝利特水泥熟料的性能研究[J]. 硅酸盐通报, 2024, 43(9): 3348-3358. |
[9] | 刘宏波, 贾小静, 张博洋, 孙岩, 李泳, 常璞, 孙婧. 双掺石墨烯-氧化石墨烯再生粗骨料混凝土力学性能和抗冻耐久性研究[J]. 硅酸盐通报, 2024, 43(9): 3359-3367. |
[10] | 陈浩, 杨静潇, 徐勇, 靖正阳, 涂兵田, 王皓. Mg0.27Al2.58O3.73N0.27透明陶瓷的热压/热等静压烧结制备与性能[J]. 硅酸盐通报, 2024, 43(9): 3378-3385. |
[11] | 赵存河, 聂光临, 刘一军, 左飞, 庞伟科, 汪庆刚, 包亦望. 不同熔剂体系制备的陶瓷岩板及其性能[J]. 硅酸盐通报, 2024, 43(9): 3386-3398. |
[12] | 韩峥, 汪涛, 刘治伟, 聂云鹏, 王雪婷. 室温挤出3D打印HA/β-TCP/DCPA骨支架的复合浆料研究[J]. 硅酸盐通报, 2024, 43(9): 3472-3478. |
[13] | 周永芳, 张大江, 姜良知, 黄文, 王雷, 王剑锋. 三元醇胺对胶凝材料水化影响的研究进展[J]. 硅酸盐通报, 2024, 43(8): 2748-2757. |
[14] | 慕儒, 范春豪, 王晓伟, 陈向上, 卿龙邦, 梅少林, 曹诚祥, 刘海洋. 数字化分布钢纤维增强水泥基复合材料方凳数值模拟研究[J]. 硅酸盐通报, 2024, 43(8): 2827-2834. |
[15] | 王瑞, 姚直书, 方玉, 王佳奇. 冻结井壁仿钢纤维混凝土动静态力学性能和微观结构研究[J]. 硅酸盐通报, 2024, 43(8): 2835-2847. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||