[1] MAO Z Z, DUAN J, ZHENG X J, et al. Study on optical properties of La2O3-TiO2-Nb2O5 glasses prepared by containerless processing[J]. Ceramics International, 2015, 41: S51-S56. [2] DUMBAUGH W H, LAPP J C. Heavy-metal oxide glasses[J]. Journal of the American Ceramic Society, 1992, 75(9): 2315-2326. [3] FUJINO S, TAKEBE H, MORINAGA K. Measurements of refractive indexes and factors affecting dispersion in oxide glasses[J]. Journal of the American Ceramic Society, 1995, 78(5): 1179-1184. [4] YOSHIMOTO K, MASUNO A, INOUE H, et al. Thermal stability, optical transmittance, and refractive index dispersion of La2O3-Nb2O5-Al2O3 glasses[J]. Journal of the American Ceramic Society, 2015, 98(2): 402-407. [5] SASAKI S, MASUNO A, OHARA K, et al. Structural origin of additional infrared transparency and enhanced glass-forming ability in rare-earth-rich borate glasses without B-O networks[J]. Inorganic Chemistry, 2020, 59(19): 13942-13951. [6] MASUNO A, INOUE H. High refractive index of 0.30La2O3-0.70Nb2O5 glass prepared by containerless processing[J]. Applied Physics Express, 2010, 3(10): 102601. [7] INOUE H, WATANABE Y, MASUNO A, et al. Effect of substituting Al2O3 and ZrO2 on thermal and optical properties of high refractive index La2O3-TiO2 glass system prepared by containerless processing[J]. Optical Materials, 2011, 33(12): 1853-1857. [8] WANG X Y, ZHANG M Z, CHEN K, et al. Optical, mechanical and thermal properties in HfO2-doped TiO2-LaO3/2 glasses fabricated by aerodynamic levitation[J]. Materials Research Bulletin, 2023, 158: 112079. [9] ZHANG X Y, ZHANG J R, ZHOU C H, et al. Optical properties and irradiation resistance of novel high-entropy oxide glasses La2O3-TiO2-Nb2O5-WO3-M2O3 (M=B/Ga/In)[J]. Journal of Rare Earths, 2023, 41 (4): 507-515. [10] CHUNG J, WATANABE Y, YANANBA Y, et al. Novel gallate-based oxide and oxyfluoride glasses with wide transparency, high refractive indices, and low dispersions[J]. Journal of the American Ceramic Society, 2020, 103(1): 167-175. [11] HOYA C. Optical glass and optical element: USA, US20231839493[P]. 2024-06-27. [12] HASEGAWA T. Optical properties of Bi2O3-TeO2-B2O3 glasses[J]. Journal of Non-Crystalline Solids, 2011, 357(15): 2857-2862. [13] ZHAO G Y, TIAN Y, FAN H Y, et al. Properties and structures of Bi2O3-B2O3-TeO2 glass[J]. Journal of Materials Science & Technology, 2013, 29(3): 209-214. [14] NIPPON ELECTRIC GLASS CO., LTD. Optical glass and method for producing the same: Japan, JP20160153349[P]. 2018-02-08. [15] SCHOTTAG AG. Lead and arsenic free optical glass with high refractive index: Korea, KR20060105117[P]. 2007-05-02. [16] ZAN L, HUANG L, ZHANG C S. New chalcohalide glasses from the Sb2S3-MXn system[J]. Journal of Non-Crystalline Solids, 1995, 184: 0022309394005931. [17] NASU H, IBARA Y, KUBODERA K. Optical third-harmonic generation from some high-index glasses[J]. Journal of Non-Crystalline Solids, 1989, 110(2/3): 229-234. [18] ASAMI T, MATSUISHI K, ONARI S, et al. Structural relaxation in the glass transition region of chalcogenide amorphous semiconductors (GeS2)1-Y(Sb2S3)Y[J]. Journal of Non-Crystalline Solids, 1998, 226(1/2): 92-98. [19] ASAMI T, MATSUISHI K, ONARI S, et al. Low frequency Raman scattering spectra of (GeS2)1-x(Sb2S3)x amorphous semiconductors[J]. Journal of Non-Crystalline Solids, 1997, 211(1/2): 89-94. [20] ŹERVINKA L, SMOTLACHA O, TICHŹAÝ L. A study of the structure of (GeS2)1-x(Sb2S3)x glasses[J]. Journal of Non-Crystalline Solids, 1987, 97/98: 183-186. [21] LEE J H, LEE W H, CHOI J H, et al. High refractive index dispersion of compositionally optimized Ge-Ga-Sb-S sulfide glass for use as molded lens in the long-wavelength infrared range[J]. Ceramics International, 2018, 44(17): 21956-21961. [22] LEE J H, KIM H, LEE J I, et al. Infrared transmission and refractive index dispersion of mixed-chalcogen Ge-Sb-S-Se glasses for use in molded lens applications[J]. Journal of Non-Crystalline Solids, 2020, 546: 120258. [23] KOCHANOWICZ M, DOROSZ D, ZMOJDA J, et al. Influence of temperature on upconversion luminescence in tellurite glass Co-doped with Yb3+/Er3+ and Yb3+/Tm3+[J]. Journal of Luminescence, 2014, 151: 155-160. [24] LINGANNA K, IN J H, KIM S H, et al. Engineering of TeO2-ZnO-BaO-based glasses for mid-infrared transmitting optics[J]. Materials, 2020, 13(24): 5829. [25] ZHU Y R, SHEN X J, ZHOU M H, et al. 2.0 μm band emission enhancement and energy transfer in Ho3+/Yb3+/Er3+ tri-doped tellurite glasses[J]. Journal of Luminescence, 2019, 210: 28-37. [26] LI D X, ZENG X J, LI Z P, et al. Progress and perspectives in dielectric energy storage ceramics[J]. Journal of Advanced Ceramics, 2021, 10(4): 675-703. [27] SHI Y H, ZHANG M H, WANG H B, et al. Study on the optical and thermal properties of a new mid-infrared TeO2-Ta2O5-La2O3 glass[J]. Materials Letters, 2022, 316: 132004. [28] 贺文燕, 谷帮新. 氧化钛和氧化铁对镧系玻璃光吸收的影响[J]. 光学工程, 1980, 7(2): 42-48. HE W Y, GU B X. Effect of titanium oxide and iron oxide on light absorption of lanthanide glass[J]. Opto-Electronic Engineering, 1980, 7(2): 42-48 (in Chinese). [29] 赵东来, 杜占平, 李东宁. 高折射率低比重光学玻璃的研究[J]. 光学机械, 1983(5): 8-19. ZHAO D L, DU Z P, LI D N. Study on optical glass with high refractive index and low specific gravity[J]. Optics and Precision Engineering, 1983(5): 8-19 (in Chinese). [30] 张 锐, 许红亮, 王海龙, 等. 玻璃工艺学[M]. 北京: 化学工业出版社, 2008. ZHANG R, XU H L, WANG H L, et al. Glass technology[M]. Beijing: Chemical Industry Press, 2008 (in Chinese). [31] 蒋亚丝. 光学玻璃进展(3)[J]. 玻璃与搪瓷, 2010, 38(3): 43-47. JIANG Y S. Progress in optical glass (3)[J]. Glass & Enamel, 2010, 38(3): 43-47 (in Chinese). [32] 吴爱英, 沈菊云, 沈奇咏. 代稀土无Pb高折射率光学玻璃(TiF 700/350)的研究[J]. 材料研究学报, 1995, 9(6): 543-546. WU A Y, SHEN J Y, SHEN Q Y. Study on Pb-free high refractive index optical glass (TIF 700/350) instead of rare earth[J]. Chinese Journal of Materials Research, 1995, 9(6): 543-546 (in Chinese). [33] 蒋亚丝. 光学玻璃进展(10): 近10年光学玻璃发展[J]. 玻璃与搪瓷, 2019, 47(3): 46-54. JIANG Y S. Progress in optical glass (10): developments of optical glasses in the recent decade[J]. Glass & Enamel, 2019, 47(3): 46-54 (in Chinese). [34] HAN J J, WANG Z, LI J Q, et al. Large-sized La2O3-TiO2 high refractive glasses with low SiO2 fraction by hot-press sintering[J]. International Journal of Applied Glass Science, 2019, 10(3): 371-377. [35] ALEKSEEV R O, AVAKYAN L A, SHAKHGILDYAN G Y, et al. Local atomic structure of the high refractive index La2O3-Nb2O5-B2O3 glasses[J]. Journal of Alloys and Compounds, 2022, 917 (5): 165357. [36] HONG S, LEE J H, GELIJA D, et al. Compositional and structural study of B2O3-La2O3-Ta2O5-SiO2 glasses for high refractive index optical lenses[J]. Ceramics International, 2024, 50(1): 2062-2072.[37] SPRENGARD R. High-index glass wafers open a path to mass-marketing AR glasses[J]. Information Display, 2020, 36(3): 30-33. [38] 张 怡. 高折射率玻璃微珠的制备及性能研究[D]. 西安: 长安大学, 2014. ZHANG Y. Preparation and properties of high refractive index glass beads[D]. Xi'an: Chang'an University, 2014 (in Chinese). [39] HAN P D, JIANG X P, XU M Y, et al. Three primary colors upconversion phosphors and combined white upconversion luminscence in Y2O2S matrix[J]. Materials Research Bulletin, 2015, 70: 658-662. [40] SHI L S, LI C F, SHEN Q Y, et al. White upconversion emission in Er3+/Yb3+/Tm3+ codoped LiTaO3 polycrystals[J]. Journal of Alloys and Compounds, 2014, 591: 105-109. [41] ZHANG M H, YU J D, JIANG W, et al. Bright white upconversion luminescence from Er3+/Tm3+/Yb3+-doped titanate-based glasses prepared by aerodynamic levitation method[J]. Optical Materials, 2017, 72: 447-451. |