[1] WU X S, HUANG Q, ZHU Y Z, et al. Joining of SiC ceramic by Si-C reaction bonding using organic resin as carbon precursor[J]. Materials, 2022, 15(12): 4242. [2] LI H W, ZHAO Y P, CHEN G Q, et al. SiC-based ceramics with remarkable electrical conductivity prepared by ultrafast high-temperature sintering[J]. Journal of the European Ceramic Society, 2023, 43(5): 2269-2274. [3] 陈 强, 李 顺, 朱利安, 等. 纤维增强碳化硅陶瓷基复合材料高导热性能研究进展[J]. 材料工程, 2023, 51(8): 46-55. CHEN Q, LI S, ZHU L A, et al. Research progress in high thermal conductivity of silicon carbide matrix composites reinforced with fibers[J]. Journal of Materials Engineering, 2023, 51(8): 46-55 (in Chinese). [4] 李辰冉, 谢志鹏, 康国兴, 等. 国内外碳化硅陶瓷材料研究与应用进展[J]. 硅酸盐通报, 2020, 39(5): 1353-1370. LI C R, XIE Z P, KANG G X, et al. Research and application progress of SiC ceramics: a review[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1353-1370 (in Chinese). [5] ZHOU Y B, SHA W H, LIU Y Y, et al. Influence of carbon source on microstructural and mechanical properties of high-performance reaction-bonded silicon carbide[J]. Materials, 2022, 15(15): 5250. [6] CIFTJA A, ENGH T A, TANGSTAD M. Wetting properties of molten silicon with graphite materials[J]. Metallurgical and Materials Transactions A, 2010, 41(12): 3183-3195. [7] 中国科学院长春光学精密机械与物理研究所.光之眼: 碳化硅反射镜[J]. 硅酸盐通报, 2020, 39(9): 3043. Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics.The eyes of telescope: silicon carbide mirror[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 3043 (in Chinese). [8] 唐 婕, 霍艳丽. 创造高端技术装备研发的“神话”: 中国建材总院推进高精密碳化硅陶瓷在IC装备制造业的新应用纪实[J]. 中国建材科技, 2016, 25(4): 1-2. TANG J, HUO Y L. Create the “myth” of high-end technology and equipment research and development: on-the-spot report of China Building Materials Academy promoting the new application of high-precision silicon carbide ceramics in IC equipment manufacturing industry[J]. China Building Materials Science & Technology, 2016, 25(4): 1-2 (in Chinese). [9] LOUIS E, MIRALLES J A, MOLINA J M. Reactive infiltration: identifying the role of chemical reactions, capillarity, viscosity and gravity[J]. Journal of Materials Science, 2017, 52(12): 7530-7538. [10] EUSTATHOPOULOS N, ISRAEL R, DREVET B, et al. Reactive infiltration by Si: Infiltration versus wetting[J]. Scripta Materialia, 2010, 62(12): 966-971. [11] ROGER J, CHOLLON G. Mechanisms and kinetics during reactive infiltration of molten silicon in porous graphite[J]. Ceramics International, 2019, 45(7): 8690-8699. [12] YUSHANNOV S P, SERGEI D, KOPPENHOEFER K C. Simulation of manufacturing process of ceramic matrix composites[M]. New York, USA: John Wiley & Sons, 2008. [13] DUTKA V A. Numerical modeling of liquid-phase infiltration in the process of sintering ceramic composites[J]. Journal of Superhard Materials, 2014, 36(2): 105-116. [14] SIENA M, ILIEV O, PRILL T, et al. Identification of channeling in pore-scale flows[J]. Geophysical Research Letters, 2019, 46(6): 3270-3278. [15] VODÁK R, FÜRST T, ÍR M, et al. The difference between semi-continuum model and Richards' equation for unsaturated porous media flow[J]. Scientific Reports, 2022, 12: 7650. [16] ALI Q, MARTIN J, BRANKO B. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces[J]. Advances in Water Resources, 2014, 74: 116-126. [17] DONG C C. Numerical simulation of metal melt flows in mold cavity with ceramic porous media[J]. Ceramics-Silikaty, 2016: 129-135. [18] SERGI D, GROSSI L, LEIDI T, et al. Lattice Boltzmann simulations on the role of channel structure for reactive capillary infiltration[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 301-323. [19] SERGI D, GROSSI L, LEIDI T, et al. Simulation of capillary infiltration into packing structures for the optimization of ceramic materials using the lattice Boltzmann method[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 485-499. [20] 黄筱云. 自由表面追踪方法理论研究及数值模拟[D]. 天津: 天津大学, 2005. HUANG X Y. Theoretical research and numerical simulation on free surface tracking method[D].Tianjin: Tianjin University, 2005 (in Chinese). [21] JETTESTUEN E, HELLAND J O, PRODANOVIŹAC'G1 M. A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles[J]. Water Resources Research, 2013, 49(8): 4645-4661. [22] SINGH D, FRIIS H A, JETTESTUEN E, et al. Adaptive mesh refinement in locally conservative level set methods for multiphase fluid displacements in porous media[J]. Computational Geosciences, 2023, 27(5): 707-736. [23] HELLAND J O, PEDERSEN J, FRIIS H A, et al. A multiphase level set approach to motion of disconnected fluid Ganglia during capillary-dominated three-phase flow in porous media: numerical validation and applications[J]. Chemical Engineering Science, 2019, 203: 138-162. [24] TERSOFF J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5566-5568. [25] 黄淑清, 聂宜如, 申先甲. 热学教程[M]. 3版. 北京: 高等教育出版社, 2011. HUANG S Q, NIE Y R, SHEN X J. Heat tutorial[M]. 3rd ed. Beijing: Higher Education Press, 2011 (in Chinese). [26] CASSIE A B D. Contact angles[J]. Discussions of the Faraday Society, 1948, 3: 11. [27] HOSSEINZADEGAN A, RAOOF A, MAHDIYAR H, et al. Review on pore-network modeling studies of gas-condensate flow: pore structure, mechanisms, and implementations[J]. Geoenergy Science and Engineering, 2023, 226: 211693. [28] CAI J C, JIN T X, KOU J S, et al. Lucas-washburn equation-based modeling of capillary-driven flow in porous systems[J]. Langmuir, 2021, 37(5): 1623-1636. [29] ZHANG K Y, ZHAO R D, YANG Y Q, et al. Capillary infiltration of liquid silicon in carbon nanotubes: a molecular dynamics simulation[J]. Journal of Materials Science & Technology, 2023, 144: 219-223. [30] 黄新明. 硅熔体的密度、表面张力和粘度[J]. 物理, 1997, 26(1): 40-45. HUANG X M. Density, surface tension and viscosity of silicon melt[J]. Physics, 1997, 26(1): 40-45 (in Chinese). [31] 郝润蓉, 方锡义, 钮少冲. 无机化学丛书典藏版, 第三卷[M]. 1版. 北京: 科学出版社, 2018: 84-100. HE R R, FANG X Y, NIU S C. Inorganic chemistry series collection, vol III[M]. 1st ed. Beijing: Science Press, 2018: 84-100 (in Chinese). [32] 许 多, 丁建宁, 袁宁一, 等. 壁面材质和温度场对熔融硅润湿角的影响[J]. 物理学报, 2015, 64(11): 338-344. XU D, DING J N, YUAN N Y, et al. Effect of temperature field and different walls on the wetting angle of molten silicon[J]. Acta Physica Sinica, 2015, 64(11): 338-344 (in Chinese). [33] 朱瑜明, 岳文正, 张 星, 等. 多孔介质孔隙结构迂曲度计算方法研究进展[J]. 地球物理学进展, 2023, 38(3): 1293-1304. ZHU Y M, YUE W Z, ZHANG X, et al. Advances on the calculation methods of tortuosity in porous media[J]. Progress in Geophysics, 2023, 38(3): 1293-1304 (in Chinese). [34] EINSET E O. Analysis of reactive melt infiltration in the processing of ceramics and ceramic composites[J]. Chemical Engineering Science, 1998, 53(5): 1027-1039. [35] 李含建. SiCp/AZ91D复合材料真空气压浸渗机理及界面结构研究[D]. 南昌: 南昌航空大学, 2010. LI H J. Research on the interface structure and the infiltration-mechanism of SiCp/AZ91D by vacuum[D].Nanchang: Nanchang Hangkong University, 2010 (in Chinese). [36] 李含建, 徐志峰, 蔡长春, 等. 熔体浸渗法制备金属基复合材料的研究进展[J]. 热加工工艺, 2010, 39(18): 90-93. LI H J, XU Z F, CAI C C, et al. Research progress in metal matrix composite fabricated by melt infiltration[J]. Hot Working Technology, 2010, 39(18): 90-93 (in Chinese). [37] 汪志太. 真空压力渗流法制备SiCp/Mg复合材料[D]. 南昌: 南昌航空大学, 2007. WANG Z T. Preparation of SiCp/Mg composites by vacuum pressure percolation method[D]. Nanchang: Nanchang Hangkong University, 2007 (in Chinese). |