[1] LIN C A, IHRIG M, KUNG K C, et al. Low-temperature sintering of Li0.33La0.55TiO3 electrolyte for all-solid-state Li batteries[J]. Journal of the European Ceramic Society, 2023, 43(16): 7543-7552. [2] LU X, DUAN M, XIANG J, et al. Enhancement of ionic conductivity and fracture toughness by infiltrating porous Li0.33La0.56TiO3 pellets[J]. Journal of Rare Earths 2024, 42 (2): 392-398. [3] PAENGSON S, PILASUTA P, MORI D, et al. Effect of Sr and Ta co-substitution on microstructure and ionic conductivity of cubic-Li0.5La0.5TiO3 electrolyte for applications in Li batteries[J]. Journal of Alloys and Compounds, 2024, 979: 173512. [4] WU Q Y, ZHENG D Y, MAO R Y, et al. Influence of tetragonal/cubic phase composition on the total ionic conductivity of Li3xLa2/3-xTiO3[J]. AIP Advances, 2023, 13(10): 105025. [5] DONG W Y, ZHANG Y F, ZHU J C, et al. MOF lamellar membrane-derived LLTO solid state electrolyte for high lithium ion conduction[J]. Journal of Membrane Science, 2022, 663: 121041. [6] LI Y, ZHAI Y X, XU S X, et al. Using LLTO with vertically aligned and oriented structures to improve the ion conductivity of composite solid-state electrolytes[J]. Materials Today Communications, 2022, 33: 104243. [7] LIN Y K, LIU K, XIONG C, et al. A composite solid electrolyte with an asymmetric ceramic framework for dendrite-free all-solid-state Li metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(15): 9665-9674. [8] CAO C C, ZHONG Y J, ZHAO L Q, et al. Enhancing fast-charge capabilities in solid-state lithium batteries through the integration of high Li0.5La0.5TiO3 (LLTO) content in the lithium-metal anode[J]. ACS Applied Materials & Interfaces, 2023, 15(51): 59370-59379. [9] GU R, KANG J R, GUO X, et al. Microstructure and ionic conductivity of Li0.5-La0.5(Ti1-xNbx)O3 solid-state electrolytes[J]. Journal of Alloys and Compounds, 2022, 896: 163084. [10] KIM S, LEE H, PARK J, et al. Lithium-preserved sintering method for perovskite-based solid electrolyte thin films via flash light sintering for all-solid-state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(40): 21586-21594. [11] ABREU-SEPÚLVEDA M, WILLIAMS D E, HUQ A, et al. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes[J]. Ionics, 2016, 22(3): 317-325. [12] XU P Y, RHEINHEIMER W, MISHRA A, et al. Origin of high interfacial resistance in solid-state batteries: LLTO/LCO half-cells[J]. ChemElectroChem, 2021, 8(10): 1847-1857. [13] BORTNAR P, UNTAR J, SPREITZER M, et al. Exaggerated grain growth and the development of coarse-grained microstructures in lithium lanthanum titanate perovskite ceramics[J]. Journal of the European Ceramic Society, 2023, 43(3): 1017-1027. [14] SASANO S, ISHIKAWA R, SÁNCHEZ-SANTOLINO G, et al. Atomistic origin of Li-ion conductivity reduction at (Li3xLa2/3-x)TiO3 grain boundary[J]. Nano Letters, 2021, 21(14): 6282-6288. [15] WANG R L, DONG Q, WANG C W, et al. High-temperature ultrafast sintering: exploiting a new kinetic region to fabricate porous solid-state electrolyte scaffolds[J]. Advanced Materials, 2021, 33(34): 2100726. [16] RAMOS E, BROWAR A, ROEHLING J, et al. CO2 laser sintering of garnet-type solid-state electrolytes[J]. ACS Energy Letters, 2022, 7(10): 3392-3400. [17] SUKENIK E G, KASAEI L, AMATUCCI G G. Impact of gradient porosity in ultrathick electrodes for lithium batteries[J]. Journal of Power Sources, 2023, 579: 233327. [18] XU X, ZHANG X, JU Z Y, et al. Unraveling the effects of hierarchical bimodal microscale porosity on thick electrodes[J]. The Journal of Physical Chemistry C, 2022, 126(36): 15135-15143. [19] PARK C, NA S, PARK H G, et al. Synergistic effect of calcination and sintering on the reduction of grain boundary resistance of LATP solid electrolyte[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26985-26992. [20] UHLMANN C, BRAUN P, ILLIG J, et al. Interface and grain boundary resistance of a lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) solid electrolyte[J]. Journal of Power Sources, 2016, 307: 578-586. [21] QIN Z W, MENG X C, XIE Y M, et al. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries[J]. Energy Storage Materials, 2021, 43: 190-201. [22] SUN Q F, TUFAIL M K, LI W K, et al. Combination of 3D current collectors and in situ polymerized electrolytes enabling high-mass-loading cathodes for solid-state lithium batteries[J]. Applied Physics Letters, 2023, 122(21): 211101. [23] HONG M, DONG Q, XIE H, et al. Tailoring grain growth and densification toward a high-performance solid-state electrolyte membrane[J]. Materials Today, 2021, 42: 41-48. [24] SUGATA S, SAITO N, WATANABE A, et al. Quasi-solid-state lithium batteries using bulk-size transparent Li7La3Zr2O12 electrolytes[J]. Solid State Ionics, 2018, 319: 285-290. [25] LING M E, JIANG Y, HUANG Y, et al. Enhancement of ionic conductivity in Li0.5La0.5TiO3 with Ag nanoparticles[J]. Journal of Materials Science, 2020, 55(9): 3750-3759. |