[1] FAZZO L, MINICHILLI F, SANTORO M, et al. Hazardous waste and health impact: a systematic review of the scientific literature[J]. Environmental Health, 2017, 16(1): 107. [2] LIU H M, LI S, GUO G Z, et al. Ash formation and the inherent heavy metal partitioning behavior in a 100 t/d hazardous waste incineration plant[J]. The Science of the Total Environment, 2022, 814: 151938. [3] 雷洪鸣, 陈 祎, 贾瑞东, 等. 垃圾焚烧飞灰与玻璃添加剂熔融固化物相转变研究[J]. 应用化工, 2023, 52(7): 2084-2087+2092. LEI H M, CHEN Y, JIA R D, et al. Phase transitions of MSWI fly ash and glass additives during vitrification[J]. Applied Chemical Industry, 2023, 52(7): 2084-2087+2092 (in Chinese). [4] SONG W F, ZHU Z W, CAO J W, et al. The effect of sulfur on the leaching of Cr3+, Cr6+, Pb2+ and Zn2+ from fly ash glass[J]. Chemosphere, 2022, 305: 135387. [5] SANITO R C, BERNUY-ZUMAETA M, YOU S J, et al. A review on vitrification technologies of hazardous waste[J]. Journal of Environmental Management, 2022, 316: 115243. [6] 徐 凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35(7): 481-488+517. XU K. Review of international research progress on nuclear waste vitrification[J]. Materials China, 2016, 35(7): 481-488+517 (in Chinese). [7] LONG Y Y, SONG Y H, YANG Y Q, et al. Co-vitrification of hazardous waste incineration fly ash and hazardous waste sludge based on CaO-SiO2-Al2O3 system[J]. Journal of Environmental Management, 2023, 338: 117776. [8] 胡佳慧, 郑 洋, 孙聪聪, 等. 危险废物焚烧飞灰玻璃化产物危险特性[J]. 环境科学研究, 2018, 31(8): 1450-1456. HU J H, ZHENG Y, SUN C C, et al. Fly ash from hazardous waste incineration: vitrification and hazardous characteristics[J]. Research of Environmental Sciences, 2018, 31(8): 1450-1456 (in Chinese). [9] LI B, WANG Y Y, LUO W Q, et al. Effects of Fe2O3 on the crystallization and structure of CaO-Fe2O3-SiO2 glass ceramics[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(3): 1619-1625. [10] YU S, LI X F, WANG H C, et al. C_CART: an instance confidence-based decision tree algorithm for classification[J]. Intelligent Data Analysis, 2021, 25(4): 929-948. [11] RAY C S, SAMARANAYAKE V A, MOHAMMADKHAH A, et al. Iron phosphate glass waste forms for vitrifying Hanford AZ102 low activity waste (LAW), part I: glass formation model[J]. Journal of Non-Crystalline Solids, 2017, 458: 149-156. [12] SHARIFIKOLOUEI E, BAINO F, SALVO M, et al. Vitrification of municipal solid waste incineration fly ash: an approach to find the successful batch compositions[J]. Ceramics International, 2021, 47(6): 7738-7744. [13] SHENG J W, LUO S G, TANG B L. Vitrification of borate waste generated by nuclear power plants[J]. Nuclear Technology, 1999, 125(1): 85-92. [14] 国家市场监督管理总局, 国家标准化管理委员会. 固体废物玻璃化处理产物技术要求: GB/T 41015—2021[S]. 北京: 中国标准出版社, 2021. State Administration for Market Regulation, Standardization Administration. Technical requirements for solid waste vitrification product: GB/T 41015—2021[S]. Beijing: Standards Press of China, 2021 (in Chinese). [15] GHIASI M M, ZENDEHBOUDI S, MOHSENIPOUR A A. Decision tree-based diagnosis of coronary artery disease: cart model[J]. Computer Methods and Programs in Biomedicine, 2020, 192: 105400. [16] CHOUBIN B, ZEHTABIAN G, AZAREH A, et al. Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches[J]. Environmental Earth Sciences, 2018, 77(8): 314. [17] STROBL C, MALLEY J, TUTZ G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests[J]. Psychological Methods, 2009, 14(4): 323-348. [18] SHINKEVICH A I, ERSHOVA I G, GALIMULINA F F, et al. Innovative mesosystems algorithm for sustainable development priority areas identification in industry based on decision trees construction[J]. Mathematics, 2021, 9(23): 3055. [19] 庄 锐, 张 浩. 基于平均特征重要性和集成学习的异常检测[J]. 计算机系统应用, 2023, 32(6): 60-69. ZHUANG R, ZHANG H. Anomaly detection based on average feature importance and ensemble learning[J]. Computer Systems and Applications, 2023, 32(6): 60-69 (in Chinese). |