[1] ZHANG Y, HUANG Y, ZHANG T F, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials, 2015, 27(12): 2049-2053. [2] CHEN C, PAN L M, JIANG S C, et al. Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites[J]. Journal of the European Ceramic Society, 2018, 38: 1639-1646. [3] SONG L M, FAN B B, CHEN Y Q, et al. Ultralight and hyperelastic SiC nanofiber aerogel spring for personal thermal energy regulation[J]. Journal of Advanced Ceramics, 2022, 11(8): 1235-1248. [4] MA C, DAI Q F, FAN B B, et al. Porous structure to improve microwave absorption properties of lamellar ZnO[J]. Advanced Powder Technology, 2016, 28: 438-442. [5] GU W H, TAN J W, CHEN J B, et al. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28727-28737. [6] NIU H H, TU X Y, ZHANG S, et al. Engineered core-shell SiO2@Ti3C2Tx composites: towards ultra-thin electromagnetic wave absorption materials[J]. Chemical Engineering Journal, 2022, 446: 137260. [7] CHEN R F, CHENG J H, WEI Y. Preparation and magnetic properties of Fe3O4 microparticles with adjustable size and morphology[J]. Journal of Alloys and Compounds, 2012, 520: 266-271. [8] GOLCHINVAFA S, MASOUDPANAH S M, JAZIREHPOUR M. Magnetic and microwave absorption properties of FeCo/CoFe2O4 composite powders[J]. Journal of Alloys and Compounds, 2019, 809: 151746. [9] HU F Y, WANG X H, BAO S, et al. Tailoring electromagnetic responses of delaminated Mo2TiC2T MXene through the decoration of Ni particles of different morphologies[J]. Chemical Engineering Journal, 2022, 440: 135855. [10] 力国民, 苏宁静, 朱保顺, 等. 利用煤矸石制备Fe3O4和Fe负载的微波吸收材料[J]. 硅酸盐通报, 2021, 40(9): 2998-3004. LI G M, SU N J, ZHU B S, et al. Fe3O4 and Fe loaded composites as microwave absorbents by recycling of gangue[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2998-3004 (in Chinese). [11] LUO Y, WU Y H, MA S H, et al. Utilization of coal fly ash in China: a mini-review on challenges and future directions[J]. Environmental Science and Pollution Research, 2021, 28(15): 18727-18740. [12] AHMARUZZAMAN M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3): 327-363. [13] 李 振, 雪 佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165-178. LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165-178 (in Chinese). [14] 王建新, 李 晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3833-3841. WANG J X, LI J, ZHAO S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3833-3841 (in Chinese). [15] ZACCO A, BORGESE L, GIANONCELLI A, et al. Review of fly ash inertisation treatments and recycling[J]. Environmental Chemistry Letters, 2014, 12(1): 153-175. [16] ZHU B S, TIAN Y M, WANG Y K, et al. Construction of Ni-loaded ceramic composites for efficient microwave absorption[J]. Applied Surface Science, 2021, 538: 148018. [17] WANG Y H, LI X D, HAN X J, et al. Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption[J]. Chemical Engineering Journal, 2020, 387: 124159. [18] WU G L, JIA Z R, ZHOU X F, et al. Interlayer controllable of hierarchical MWCNTs@C@FexOy cross-linked composite with wideband electromagnetic absorption performance[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105687. [19] NING M Q, LI J B, KUANG B Y, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M=Fe, Co, Ni) for efficient microwave absorption[J]. Applied Surface Science, 2018, 447: 244-253. [20] ZHU Z T, SUN X, LI G X, et al. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band[J]. Journal of Magnetism and Magnetic Materials, 2015, 377: 95-103. [21] XU W, WANG G S, YIN P G. Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding[J]. Carbon, 2018, 139: 759-767. [22] LI G M, WANG L C, LI W X, et al. Fe-, co-, and Ni-loaded porous activated carbon balls as lightweight microwave absorbents[J]. ChemPhysChem, 2015, 16(16): 3458-3467. [23] WANG H, GUO H H, DAI Y Y, et al. Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules[J]. Applied Physics Letters, 2012, 101(8): 083116. [24] TONG G X, LIU F T, WU W H, et al. Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics[J]. Journal of Materials Chemistry A, 2014, 2(20): 7373-7382. [25] GUAN G G, YAN L, ZHOU Y T, et al. Composition design and performance regulation of three-dimensional interconnected FeNi@carbon nanofibers as ultra-lightweight and high efficiency electromagnetic wave absorbers[J]. Carbon, 2022, 197: 494-507. [26] ZHANG H X, SHI C, JIA Z R, et al. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2021, 584: 382-394. [27] KUANG D T, WANG S L, HOU L Z, et al. Facile synthesis and influences of Fe/Ni ratio on the microwave absorption performance of ultra-small FeNi-C core-shell nanoparticles[J]. Materials Research Bulletin, 2020, 126: 110837. [28] WEI Y, LIU H J, LIU S C, et al. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption[J]. Composites Communications, 2018, 9: 70-75. [29] SONG L M, FAN B B, CHEN Y Q, et al. Multifunctional SiC nanofiber aerogel with superior electromagnetic wave absorption[J]. Ceramics International, 2022, 48(17): 25140-25150. [30] SONG L M, ZHANG F, CHEN Y Q, et al. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption[J]. Nano-Micro Letters, 2022, 14(1): 152. [31] CHENG Y, CAO J M, LI Y, et al. The outside-In approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1427-1435. |