[1] PAHALAGEDARA L, KRIZ D A, WASALATHANTHRI N, et al. Benchmarking of manganese oxide materials with CO oxidation as catalysts for low temperature selective oxidation[J]. Applied Catalysis B: Environmental, 2017, 204: 411-420. [2] PILGER F, TESTINO A, LUCCHINI M A, et al. One-pot polyol synthesis of Pt/CeO2 and Au/CeO2 nanopowders as catalysts for CO oxidation[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(5): 3530-3539. [3] RODRIGUEZ J A, SI R, EVANS J, et al. Active gold-ceria and gold-ceria/titania catalysts for CO oxidation: from single-crystal model catalysts to powder catalysts[J]. Catalysis Today, 2015, 240: 229-235. [4] TARJOMANNEJAD A, FARZI A, GÓMEZ M J I, et al. Catalytic reduction of NO by CO over LaMn1-xFexO3 and La0.8A0.2Mn0.3Fe0.7O3 (A=Sr, Cs, Ba, Ce) perovskite catalysts[J]. Catalysis Letters, 2016, 146(11): 2330-2340. [5] XIAO P, ZHU J J, LI H L, et al. Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation[J]. ChemCatChem, 2014, 6(6): 1774-1781. [6] WEI X, HUG P, FIGI R, et al. Catalytic combustion of methane on nano-structured perovskite-type oxides fabricated by ultrasonic spray combustion[J]. Applied Catalysis B: Environmental, 2010, 94(1/2): 27-37. [7] LU F, SUI J, SU J, et al. Hollow spherical La0.8Sr0.2MnO3 perovskite oxide with enhanced catalytic activities for the oxygen reduction reaction[J]. Journal of Power Sources, 2014, 271: 55-59. [8] DING Y, WANG S, ZHANG L, et al. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane[J]. Catalysis Communications, 2017, 97: 88-92. [9] MERINO N A, BARBERO B P, ELOY P, et al. La1-xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS[J]. Applied Surface Science, 2006, 253(3): 1489-1493. [10] SEYFI B, BAGHALHA M, KAZEMIAN H. Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation[J]. Chemical Engineering Journal, 2008, 148(2): 306-311. [11] HUANG X H, PAN H Y, CHEN K, et al. Facile synthesis of porous spherical La0.8Sr0.2Mn1-xCuxO3 (0≤x≤0.4) and nanocubic La0.8Sr0.2MnO3 with high catalytic activity for CO[J]. CrystEngComm, 2018, 20(43): 7020-7029. [12] YANG L, WANG L R, HUO Y N, et al. Amelioration of an inherited metabolic liver disease through creation of a de novo start codon by cytidine base editing[J]. Molecular Therapy, 2020, 28(7): 1673-1683. [13] HUANG X H, WANG X F, YANG X K, et al. Porous LaFeO3 perovskite catalysts synthesized by different methods and their high activities for CO oxidation[J]. RSC Advances, 2022, 12(52): 33617-33625. [14] DUAN Q L, WANG J W, DING C M, et al. Partial oxidation of methane over Ni based catalyst derived from order mesoporous LaNiO3 perovskite prepared by modified nanocasting method[J]. Fuel, 2017, 193(1): 112-118. [15] MAKSHINA E, SIROTIN S, VAN DEN BERG M, et al. Characterization and catalytic properties of nanosized cobaltate particles prepared by in situ synthesis inside mesoporous molecular sieves[J]. Applied Catalysis A, General, 2006, 312: 59-66. [16] 程 凯, 白龙律, 朴文香. KIT-6介孔材料的研究进展[J]. 高分子通报, 2018(7): 58-68. CHENG K, BAI L L, PIAO W X. Research progress of mesoporous material KIT-6[J]. Polymer Bulletin, 2018(7): 58-68 (in Chinese). [17] DIAO X. Synthesis and characterization of large pore size and highly ordered mesoporous molecular sieve SBA-15[J]. Advanced Materials Research, 2012, 554/555/556: 620-623. [18] JAMMAER J, AERTS A, D’HAEN J, et al. Synthesis and characterization of COK-12 ordered mesoporous silica at room temperature under buffered quasi neutral pH[M]. Studies in Surface Science and Catalysis. Elsevier, 2010, 175: 681-684. [19] HENNING L M, CUBAS D D, COLMENARES M G, et al. High specific surface area ordered mesoporous silica COK-12 with tailored pore size[J]. Microporous and Mesoporous Materials, 2019, 280: 133-143. [20] COLMENARES M, SIMON U, YILDIZ M, et al. Oxidative coupling of methane on the Na2WO4-MnxOy catalyst: COK-12 as an inexpensive alternative to SBA-15[J]. Catalysis Communications, 2016, 85: 75-78. [21] HENNING L M, SMALES G J, COLMENARES M G, et al. Synthesis and properties of COK-12 large-pore mesocellular silica foam[J]. Nano Select, 2023, 4(3): 202-212. [22] COLMENARES M G, SIMON U, SCHMIDT F, et al. Tailoring of ordered mesoporous silica COK-12: room temperature synthesis of mesocellular foam and multilamellar vesicles[J]. Microporous and Mesoporous Materials, 2018, 267: 142-149. [23] 贾明君, 刘 钢, 张 敏, 等. 溶胶-凝胶法合成介孔材料的研究进展[J]. 黑龙江大学自然科学学报, 2008, 25(6): 759-764. JIA M J, LIU G, ZHANG M, et al. Advances in the synthesis of mesoporous materials by sol-gel method[J]. Journal of Natural Science of Heilongjiang University, 2008, 25(6): 759-764 (in Chinese). [24] ZHOU S F, GAO J J, WANG S Z, et al. Highly efficient removal of Cr(VI) from water based on graphene oxide incorporated flower-like MoS2 nanocomposite prepared in situ hydrothermal synthesis[J]. Environmental Science and Pollution Research, 2020, 27(12): 13882-13894. [25] HUANG X H, YANG N, LI X B, et al. La0.8Sr0.2MnO3 perovskite catalysts prepared by different methods for CO oxidation[J]. Catalysis Letters, 2022, 152(12): 3843-3852. [26] RIVA R, MIESSNER H, VITALI R, et al. Metal-support interaction in Co/SiO2 and Co/TiO2[J]. Applied Catalysis A General, 2000, 196(1): 111-123. [27] ZHANG R, LU Y, WEI L, et al. Synthesis and conductivity properties of Gd0.8Ca0.2BaCo2O5+δ double perovskite by sol-gel combustion[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9941-9948. [28] PETROVIĆ S, TERLECKI-BARIČEVIĆ A, KARANOVIĆ L, et al. LaMO3(M=Mg, Ti, Fe) perovskite type oxides: preparation, characterization and catalytic properties in methane deep oxidation[J]. Applied Catalysis B, Environmental, 2007, 79(2): 186-198. [29] PHOKHA S, PINITSOONTORN S, MAENSIRI S, et al. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method[J]. Journal of Sol-Gel Science and Technology, 2014, 71(2): 333-341. [30] PHOKHA S, PINITSOONTORN S, RUJIRAWAT S, et al. Polymerized complex synthesis and effect of Ti dopant on magnetic properties of LaFeO3 nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(11): 9171-9177. [31] DENG G, CHEN Y G, TAO M D, et al. Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries[J]. Electrochimica Acta, 2010, 55(3): 1120-1124. [32] HUANG X, NIU P, SHANG X. Low temperature molten salt synthesis of porous La1-xSrxMn0.8Fe0.2O3 (0≤x≤0.6) microspheres with high catalytic activity for CO oxidation[J]. Chinese Journal of Catalysis, 2016, 37(8): 1431-1439. |