[1] MUZHANJE A T, HASSAN M A, EL-MONEIM A A, et al. Preparation and physical and thermal characterizations of enhanced phase change materials with nanoparticles for energy storage applications[J]. Journal of Molecular Liquids, 2023, 390: 122958. [2] NAVEENKUMAR R, RAVICHANDRAN M, MOHANAVEL V, et al. Review on phase change materials for solar energy storage applications[J]. Environmental Science and Pollution Research, 2022, 29(7): 9491-9532. [3] ZHAO Y X, ZHANG X L, HUA W S. Review of preparation technologies of organic composite phase change materials in energy storage[J]. Journal of Molecular Liquids, 2021, 336: 115923. [4] XIN Y X, LI J H, HUANG K Y, et al. Thermal characteristics enhancement of Na2HPO4·12H2O/expanded graphite form-stable composite phase change material by the cationic surfactant modification[J]. Journal of Energy Storage, 2022, 54: 105399. [5] WILLIAMS J D, PETERSON G P. A review of thermal property enhancements of low-temperature nano-enhanced phase change materials[J]. Nanomaterials, 2021, 11(10): 2578. [6] SONG K L, LIU Z P, YANG A S, et al. Shape-stabilized phase change materials of Barium hydroxide octahydrate based on Cu-coated melamine foam[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 678: 132465. [7] ZHANG Y A, UMAIR M M, ZHANG S F, et al. Phase change materials for electron-triggered energy conversion and storage: a review[J]. Journal of Materials Chemistry A, 2019, 7(39): 22218-22228. [8] QIU J C, HUO D, XIA Y N. Phase-change materials for controlled release and related applications[J]. Advanced Materials, 2020, 32(25): 2000660. [9] KALIDASAN B, PANDEY A K, SAIDUR R, et al. Thermal performance and corrosion resistance analysis of inorganic eutectic phase change material with one dimensional carbon nanomaterial[J]. Journal of Molecular Liquids, 2023, 391: 123281. [10] LUAN Y, YANG M, MA Q Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20): 7641-7649. [11] LV G Y, FU W W, ZHOU W, et al. Preparation and properties of Na2HPO4·12H2O-expanded pertile shape stable phase change material for building field[J]. Journal of Polymer Research, 2023, 30(8): 311. [12] LUO Q S, ZHENG H Z, HU Y J, et al. Carbon nanotube/chitosan-based elastic carbon aerogel for pressure sensing[J]. Industrial & Engineering Chemistry Research, 2019, 58(38): 17768-17775. [13] HU Y J, ZHUO H, CHEN Z H, et al. Superelastic carbon aerogel with ultrahigh and wide-range linear sensitivity[J]. ACS Applied Materials & Interfaces, 2018, 10(47): 40641-40650. [14] LIU P P, CHEN X, LI Y, et al. Aerogels meet phase change materials: fundamentals, advances, and beyond[J]. ACS Nano, 2022, 16(10): 15586-15626. [15] CHEN F L, LIU X, WANG Z Y, et al. Hierarchically porous CMC/rGO/CNFs aerogels for leakage-proof mirabilite phase change materials with superior energy thermal storage[J]. Frontiers of Materials Science, 2022, 16(4): 220619. [16] YIN C X, WENG L, FEI Z X, et al. Form-Stable phase change composites based on porous carbon derived from polyacrylonitrile hydrogel[J]. Chemical Engineering Journal, 2022, 431: 134206. [17] ZOU J, LIU J, KARAKOTI A S, et al. Ultralight multiwalled carbon nanotube aerogel[J]. ACS Nano, 2010, 4(12): 7293-7302. [18] KHOLMANOV I, KIM J, OU E, et al. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials[J]. ACS Nano, 2015, 9(12): 11699-11707. [19] ZHAO J L, LUO W J, KIM J K, et al. Graphene oxide aerogel beads filled with phase change material for latent heat storage and release[J]. ACS Applied Energy Materials, 2019, 2(5): 3657-3664. [20] LI H L, TAY R Y, TSANG S H, et al. Thermally conductive and leakage-proof phase-change materials composed of dense graphene foam and paraffin for thermal management[J]. ACS Applied Nano Materials, 2022, 5(6): 8362-8370. [21] SUN M Y, WANG Q, DI H S. A review of lignocellulosic biomass-based shape-stable composite phase change materials[J]. Journal of Energy Storage, 2023, 73: 109114. [22] ZHU M S, KONG L S, XIE M, et al. Carbon aerogel from forestry biomass as a peroxymonosulfate activator for organic contaminants degradation[J]. Journal of Hazardous Materials, 2021, 413: 125438. [23] ZU G Q, SHEN J, ZOU L P, et al. Nanocellulose-derived highly porous carbon aerogels for supercapacitors[J]. Carbon, 2016, 99: 203-211. [24] TIAN W J, SUN H Q, DUAN X G, et al. Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water[J]. Journal of Hazardous Materials, 2020, 389: 121881. [25] MALI P, SHERJE A P. Cellulose nanocrystals: fundamentals and biomedical applications[J]. Carbohydrate Polymers, 2022, 275: 118668. [26] WARESINDO W X, PRIYANTO A, SIHOMBING Y A, et al. Konjac glucomannan-based hydrogels with health-promoting effects for potential edible electronics applications: a mini-review[J]. International Journal of Biological Macromolecules, 2023, 248: 125888. [27] SUN Z B, LIU X, TIE S N, et al. Effect size of carbon micro-nanoparticles on cyclic stability and thermal performance of Na2SO4·10H2O-Na2HPO4·12H2O phase change materials[J]. Functional Materials Letters, 2023, 16(8): 2340032. [28] XU F, TANG Z W, HUANG S Q, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications, 2015, 6: 7221. [29] GALAZUTDINOVA Y, VEGA M, GRÁGEDA M, et al. Preparation and characterization of an inorganic magnesium chloride/nitrate/graphite composite for low temperature energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 175: 60-70. [30] ZHANG X X, LI X, ZHOU Y, et al. Calcium chloride hexahydrate/diatomite/paraffin as composite shape-stabilized phase-change material for thermal energy storage[J]. Energy & Fuels, 2018, 32(1): 916-921. [31] LIU J W, ZHU C H, LIANG W Z, et al. Experimental investigation on micro-scale phase change material based on sodium acetate trihydrate for thermal storage[J]. Solar Energy, 2019, 193: 413-421. [32] FU W, LU Y, ZHANG R, et al. Developing NaAc·3H2O-based composite phase change material using glycine as temperature regulator and expanded graphite as supporting material for use in floor radiant heating[J]. Journal of Molecular Liquids, 2020, 317: 113932. [33] LIU L, PENG B, YUE C S, et al. Low-cost, shape-stabilized fly ash composite phase change material synthesized by using a facile process for building energy efficiency[J]. Materials Chemistry and Physics, 2019, 222: 87-95. |