[1] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1863-1867. [2] OCHOA M, BUECHELER S, TIWARI A N, et al. Challenges and opportunities for an efficiency boost of next generation Cu(In,Ga)Se2 solar cells: prospects for a paradigm shift[J]. Energy & Environmental Science, 2020, 13(7): 2047-2055. [3] HAEGEL N M, MARGOLIS R, BUONASSISI T, et al. Terawatt-scale photovoltaics: trajectories and challenges[J]. Science, 2017, 356(6334): 141-143. [4] TAO C S, JIANG J C, TAO M. Natural resource limitations to terawatt-scale solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(12): 3176-3180. [5] KIM G, KIM W M, PARK J K, et al. Thin Ag precursor layer-assisted co-evaporation process for low-temperature growth of Cu(In,Ga)Se2 thin film[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31923-31933. [6] OCHOA M, YANG S C, NISHIWAKI S, et al. Charge carrier lifetime fluctuations and performance evaluation of Cu(In,Ga)Se2 absorbers via time-resolved-photoluminescence microscopy[J]. Advanced Energy Materials, 2022, 12(3): 2102800. [7] YIN G, BRACKMANN V, HOFFMANN V, et al. Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature[J]. Solar Energy Materials and Solar Cells, 2015, 132: 142-147. [8] MANSFIELD L M, KANEVCE A, HARVEY S P, et al. Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells[J]. Progress in Photovoltaics, 2018, 26(11): 949-954. [9] BOUTTEMY M, TRAN-VAN P, GERARD I, et al. Thinning of CIGS solar cells. Part I: chemical processing in acidic bromine solutions[J]. Thin Solid Films, 2011, 519(21): 7207-7211. [10] GLOECKLER M, SITES J R. Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells[J]. Journal of Applied Physics, 2005, 98(10): 103703. [11] KAELIN M, RUDMANN D, TIWARI A N. Low cost processing of CIGS thin film solar cells[J]. Solar Energy, 2004, 77(6): 749-756. [12] HOEX B, SCHMIDT J, BOCK R, et al. Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3[J]. Applied Physics Letters, 2007, 91(11): 112107. [13] MOORS M, BAERT K, CAREMANS T, et al. Industrial PERL-type solar cells exceeding 19% with screen-printed contacts and homogeneous emitter[J]. Solar Energy Materials and Solar Cells, 2012, 106: 84-88. [14] VERMANG B, FJÄLLSTRÖM V, PETTERSSON J, et al. Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts[J]. Solar Energy Materials and Solar Cells, 2013, 117: 505-511. [15] YIN G C, SONG M, SCHMID M. Rear point contact structures for performance enhancement of semi-transparent ultrathin Cu(In,Ga)Se2 solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 195: 318-322. [16] LI Y, TABERNIG S W, YIN G C, et al. Beyond light-trapping benefits: the effect of SiO2 nanoparticles in bifacial semitransparent ultrathin Cu(In,Ga)Se2 solar cells[J]. Solar RRL, 2022, 6(11): 2200695. [17] HEINEMANN M D, EFIMOVA V, KLENK R, et al. Cu(In,Ga)Se2 superstrate solar cells: prospects and limitations[J]. Progress in Photovoltaics: Research and Applications, 2015, 23(10): 1228-1237. [18] LI Y, YIN G C, GAO Y, et al. Sodium control in ultrathin Cu(In,Ga)Se2 solar cells on transparent back contact for efficiencies beyond 12%[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110969. [19] NAKADA T, HIRABAYASHI Y, TOKADO T, et al. Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts[J]. Solar Energy, 2004, 77(6): 739-747. [20] LI Y, YIN G C, SCHMID M. Bifacial semi-transparent ultra-thin Cu(In,Ga)Se2 solar cells on ITO substrate: how ITO thickness and Na doping influence the performance[J]. Solar Energy Materials and Solar Cells, 2022, 234: 111431. [21] SHIN M J, PARK S, LEE A, et al. Bifacial photovoltaic performance of semitransparent ultrathin Cu(In,Ga)Se2 solar cells with front and rear transparent conducting oxide contacts[J]. Applied Surface Science, 2021, 535: 147732. [22] LUCAßEN J, SEDAGHAT S, SCHMID M. Realistic multidimensional optoelectrical modeling guide for copper indium gallium diselenide solar cells[J]. Solar RRL, 2023, 7(4): 2200867. [23] SIMCHI H, MCCANDLESS B E, MENG T, et al. Structure and interface chemistry of MoO3 back contacts in Cu(In,Ga)Se2 thin film solar cells[J]. Journal of Applied Physics, 2014, 115(3): 033514. [24] SAIFULLAH M, KIM K, SHAHZAD R, et al. Insertion of the AGS layer at the CIGSe/ITO interface: a way to reduce the formation of the GaOx interfacial phase in CIGSe solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 178: 29-37. [25] TU Y, LI Y, KLENK R, et al. Is a passivated back contact always beneficial for Cu(In,Ga)Se2 solar cells?[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(4): 393-400. [26] VERMANG B, WÄTJEN J T, FJÄLLSTRÖM V, et al. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells[J]. Progress in Photovoltaics, 2014, 22(10): 1023-1029. [27] YIN G C, SONG M, DUAN S K, et al. Well-controlled dielectric nanomeshes by colloidal nanosphere lithography for optoelectronic enhancement of ultrathin Cu(In,Ga)Se2 solar cells[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31646-31652. [28] BOSE S, CUNHA J M V, SURESH S, et al. Optical lithography patterning of SiO2 layers for interface passivation of thin film solar cells[J]. Solar RRL, 2018, 2(12): 1800212. [29] YIN G, MANLEY P, SCHMID M. Light absorption enhancement for ultra-thin Cu(In1-xGax)Se2 solar cells using closely packed 2D SiO2 nanosphere arrays[J]. Solar Energy Materials and Solar Cells, 2016, 153: 124-130. [30] VAN LARE C, YIN G C, POLMAN A, et al. Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns[J]. ACS Nano, 2015, 9(10): 9603-9613. [31] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin Solid Films, 2000, 361/362: 527-532. [32] ABOU-RAS D, WAGNER S, STANBERY B J, et al. Innovation highway: breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint[J]. Thin Solid Films, 2017, 633: 2-12. [33] STANBERY B J, ABOU-RAS D, YAMADA A, et al. CIGS photovoltaics: reviewing an evolving paradigm[J]. Journal of Physics D: Applied Physics, 2022, 55(17): 173001. [34] Yin G C. Preparation of ultra-thin Cu(In1-xGax)Se2 solar cells and their light absorption enhancement[D]. Germany: Technischen Universität Berlin, 2015: 7-11. [35] MOKKAPATI S, CATCHPOLE K R. Nanophotonic light trapping in solar cells[J]. Journal of Applied Physics, 2012, 112(10): 226-346. |