欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (8): 3063-3070.

• 新型功能材料 • 上一篇    下一篇

背界面纳米光子结构提高透明导电氧化物基超薄Cu(In,Ga)Se2太阳能电池电学性能的理论探究

李航瑜, 宋浩, 涂野, 裴寒宁, 殷官超   

  1. 武汉理工大学材料科学与工程学院,武汉 430070
  • 收稿日期:2024-01-03 修订日期:2024-03-15 出版日期:2024-08-15 发布日期:2024-08-12
  • 通信作者: 殷官超,博士,教授。E-mail:guanchao.yin@whut.edu.cn
  • 作者简介:李航瑜(1998—),男,硕士研究生。主要从事光电功能材料的研究。E-mail:li.hangyu@whut.edu.cn
  • 基金资助:
    国家自然科学基金(51802240)

A Theoretical Study of Enhancing Electrical Performance of TCO-Based Ultra-Thin Cu(In,Ga)Se2 Solar Cell via Back-Interface Nanophotonic Structure

LI Hangyu, SONG Hao, TU Ye, PEI Hanning, YIN Guanchao   

  1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Received:2024-01-03 Revised:2024-03-15 Online:2024-08-15 Published:2024-08-12

摘要: 透明导电氧化物(TCO)基超薄Cu(In,Ga)Se2(CIGSe)太阳能电池具有建筑光伏一体化的潜力,然而由于背肖特基结的存在,其增大背复合速率Sb在提高空穴传输的同时也增加了光生电子背复合,从而抑制了其性能的提高。本文使用1D-SCAPS软件对背界面纳米光子结构(NPs)如何提高电池的性能进行理论探究,结果表明,背界面NPs的引入产生了复杂的电学效应。一方面,NPs本身不吸收光能,从而降低了背界面附近的有效光吸收体积,导致背界面光生载流子浓度降低,光生电子的背复合显著降低;另一方面,NPs的引入增加了吸收层厚度,导致空间电荷区(SCR)远离背界面,降低了其对光生电子的收集效率,增加了背复合。在高背复合速率(Sb=1.0×107 cm·s-1)下,光生载流子浓度降低产生的背复合降低大于SCR移动产生的背复合增加,因此总体的背复合降低。与此同时,背复合的降低还缓解了高Sb时的光生电子损耗,从而解除了随Sb增大而增加的背复合对电池性能的抑制。这些发现为设计和优化TCO基超薄CIGSe太阳能电池提供了参考。

关键词: TCO基超薄CIGSe太阳能电池, 纳米光子结构, 肖特基势垒, 光捕获, 背复合, 透明导电氧化物

Abstract: Transparent conductive oxide (TCO)-based ultra-thin Cu (In, Ga) Se2 (CIGSe) solar cell have the potential for building photovoltaic integration. However, due to the presence of a back Schottky junction, increasing the back recombination rate Sb not only improves hole transport but also increases photo generated electron back recombination, thereby suppressing its performance improvement. This article uses 1D-SCAPS software to theoretically explore how back interface nanophotonic structures (NPs) can improve the performance of cells. The research results indicate that the introduction of back interface NPs generates complex electrical effects. On the one hand, NPs themselves do not absorb light energy, thereby reducing the effective light absorption volume near the back interface, resulting in a decrease in the concentration of photogenerated carriers at the back interface and a significant decrease in back recombination of back interface. On the other hand, the introduction of NPs increases the thickness of the absorption layer, causing the space charge region (SCR) to move away from back interface, reducing its collection efficiency for photo generated electrons and leading to an increase in back recombination. At a high back recombination rate (Sb=1.0×107 cm·s-1), the decrease in photogenerated carrier concentration leads to a greater decrease in back recombination than the increase in back recombination caused by SCR movement, resulting in an overall decrease in back recombination. At the same time, the reduction of back recombination also alleviates the photogenerated electron loss at high Sb, thereby relieving the inhibition of back recombination on battery performance that increases with Sb. These findings provide reference for the design and optimization of TCO-based ultra-thin CIGSe solar cell.

Key words: TCO-based ultra-thin CIGSe solar cell, nanophotonic structure, schottky barrier, light absorption, back recombination, transparent conductive oxide

中图分类号: