欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (8): 2858-2870.

• 水泥混凝土 • 上一篇    下一篇

钢筋混凝土的负泊松比设计与抗高速冲击性能

刘进1, 张芸1, 马衍轩1,2,3, 李梦瑶1, 王鹏1, 张建4, 王公斌1, 张鹏1, 高嵩1   

  1. 1.青岛理工大学土木工程学院,青岛 266520;
    2.海洋环境混凝土技术教育部工程研究中心,青岛 266520;
    3.海洋环境混凝土技术学科创新引智基地,青岛 266520;
    4.青岛青新阳光集团有限公司,青岛 266404
  • 收稿日期:2024-01-11 修订日期:2024-03-13 出版日期:2024-08-15 发布日期:2024-08-12
  • 通信作者: 马衍轩,博士,副教授。E-mail:yxma@qut.edu.cn
  • 作者简介:刘 进(1999—),女,硕士研究生。主要从事负泊松比水泥基材料方面的研究。E-mail:lj1999owo@163.com
  • 基金资助:
    国家自然科学基金(52378248);山东省自然科学基金(ZR2022ME121);中国水利水电科学研究院水利部水工程材料重点实验室(筹)开放研究基金项目(EMF202411);海洋环境混凝土技术教育部工程研究中心开放课题(TMduracon2022010)

Negative Poisson Ratio Design and High-Speed Impact Resistance of Reinforced Concrete

LIU Jin1, ZHANG Yun1, MA Yanxuan1,2,3, LI Mengyao1, WANG Peng1, ZHANG Jian4, WANG Gongbin1, ZHANG Peng1, GAO Song1   

  1. 1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China;
    2. Engineering Research Center of Concrete Technology under Marine Environment, Ministry of Education, Qingdao 266520, China;
    3. Programme of Introducing Talents of Discipline to Universities for Concrete Technology under Marine Environment, Qingdao 266520, China;
    4. Qingdao Qingxin Sunshine Group Co., Ltd., Qingdao 266404, China
  • Received:2024-01-11 Revised:2024-03-13 Online:2024-08-15 Published:2024-08-12

摘要: 为增强钢筋混凝土的抗高速冲击性能,对钢筋混凝土的内部骨架进行负泊松比设计,得到两种内凹角数量不同的六肋及星型钢筋混凝土。利用霍普金森压杆试验对不同类型的钢筋混凝土进行抗高速冲击性能测试,并结合数字散斑相关方法对其场变化及微观泊松比进行分析,得到内凹角数量对钢筋混凝土破坏形态、承载力及耗能能力的影响规律和机理。结果表明:六肋和星型钢筋混凝土在抗高速冲击作用下出现了负泊松比,分别为-0.50和-1.00;从应变场来看,六肋和星型钢筋混凝土的最大应变均出现在内凹角附近,且以内凹角为中心向四周逐渐减小;随着钢筋结构内凹角数量的增加,钢筋混凝土的变形能力和能量耗散能力显著增强。单位体积内六肋和星型钢筋混凝土的耗能分别为1.76×105和1.86×105 J/m3,是方形钢筋混凝土的1.17倍和1.23倍,表明负泊松比钢筋混凝土的耗能能力随钢筋内凹角数量的增多而增强。

关键词: 负泊松比, 钢筋混凝土, 内凹结构, 抗高速冲击性能, 变形行为, 数字散斑相关方法

Abstract: To enhance the high-speed impact resistance of reinforced concrete, a negative Poisson ratio design was implemented on the internal framework of the concrete. This design resulted in two variations of concrete specimens with different numbers of internal concave angles: one with six-ribbed and another with star-shaped steel reinforcement. Additionally, square reinforced concrete and plain concrete were used as control groups. Split Hopkinson pressure bar (SHPB) test was conducted to assess the high-speed impact resistance of these various types of reinforced concrete. Furthermore, a digital speckle correlation method (DSCM) was employed to analyze the field variations and microscale Poisson ratio. The results show that the negative Poisson ratio of reinforced concrete can be achieved by designing the structure of reinforced skeleton. The negative Poisson ratios of six-ribbed and star-shaped reinforced concrete under high-speed impact are -0.50 and -1.00, respectively. Under the high-speed impact, the trend of surface cracks of the three kinds of reinforced concrete is related to the shape of the steel skeleton. According to the strain field, the maximum strain values of both six-ribbed and star-shaped reinforced concrete occur in the vicinity of the internal concave angles, gradually decreasing outward from these internal concave angles. With the increase of the number of internal concave angles, the deformation ability and energy dissipation ability of reinforced concrete are significantly enhanced. The energy consumption of six-ribbed and star-shaped reinforced concrete is 1.76×105 and 1.86×105 J/m3, respectively, which is 1.17 times and 1.23 times that of square reinforced concrete. These results indicate that reinforced concrete with negative Poisson ratio is superior in energy dissipation, and these capabilities could be further strengthened with the increase in the number of internal concave angles.

Key words: negative Poisson ratio, reinforced concrete, internal concave structure, high-speed impact resistance, deformation behavior, digital speckle correlation method

中图分类号: