[1] 马衍轩, 李梦瑶, 朱鹏飞, 等. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198. MA Y X, LI M Y, ZHU P F, et al. Research progress on multi-scale design and blast-resistant properties of ultra-high performance cementitious composites[J]. Materials Reports, 2021, 35(17): 17190-17198 (in Chinese). [2] LU J Y, WANG Y H. Behaviors of steel-concrete-steel sandwich panel with aluminum foam-filled energy absorbing supports under low-velocity impact[J]. Engineering Structures, 2023, 292: 116540. [3] 张 勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析[J]. 爆炸与冲击, 2022, 42(4): 128-138. ZHANG Y. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure[J]. Explosion and Shock Waves, 2022, 42(4): 128-138 (in Chinese). [4] MERCEDES L, BERNAT-MASO E, GIL L. Protective layers for concrete elements against impact load[J]. Construction and Building Materials, 2023, 405: 133356. [5] LI X M, LIU P, CHENG H, et al. Experimental and numerical analysis of low-velocity impact damage of CFRP laminates with negative Poisson ratio (NPR) rubber protective layer[J]. Thin-Walled Structures, 2023, 191: 111066. [6] 李兆凯, 马正东, 李亦文, 等. 新型点阵夹层防撞梁与负泊松比吸能盒复合总成开发与吸能性能[J]. 中国公路学报, 2021, 34(9): 322-334. LI Z K, MA Z D, LI Y W, et al. Development and energy-absorption performance of a novel composite assembly consisting of a lattice sandwich anti-collision beam and crash box with negative Poisson’s ratio[J]. China Journal of Highway and Transport, 2021, 34(9): 322-334 (in Chinese). [7] ZHANG Z J, ZHANG L A, DONG Y Y, et al. Mechanical properties of negative Poisson’s ratio metamaterial units and honeycomb structures with cosine-like re-entrant structure[J]. Materials Letters, 2023, 331: 133451. [8] 叶建华, 李东煜, 林 佳, 等. 负泊松比内凹多孔骨微结构设计与力学性能分析[J]. 机械强度, 2022, 44(6): 1380-1386. YE J H, LI D Y, LIN J, et al. Microstructure design and mechanical properties analysis of porous bone with negative Poission’s ratio[J]. Journal of Mechanical Strength, 2022, 44(6): 1380-1386 (in Chinese). [9] 任 鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687. REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687 (in Chinese). [10] 刘旭畅, 李 爽, 杨金水. 一种新型手性负泊松比结构的减振性能[J]. 复合材料学报, 2024, 41(1): 477-484. LIU X C, LI S, YANG J S. Damping performance of a new chiral negative Poisson’s ratio structure[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 477-484 (in Chinese). [11] ZHANG J J, LU G X, YOU Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review[J]. Composites Part B: Engineering, 2020, 201: 108340. [12] 石南南, 张伟晨, 李振宝, 等. 泡沫填充四韧带反手性结构和内凹结构的面内压缩性能[J/OL]. 复合材料学报, 2023: 1-13 (2023-10-27)[2024-01-03]. https://doi.org/10.13801/j.cnki.fhclxb.20231027.001. SHI N N, ZHANG W C, LI Z B, et al. In-plane compression properties of foam-filled anti-tetrachiral structure and re-entrant structure. Acta Materiae Compositae Sinica, 2023: 1-13 (2023-10-27)[2024-01-03]. https://doi.org/10.13801/j.cnki.fhclxb.20231027.001 (in Chinese). [13] GRIMA J N, GATT R, ALDERSON A, et al. On the auxetic properties of ‘rotating rectangles’ with different connectivity[J]. Journal of the Physical Society of Japan, 2005, 74(10): 2866-2867. [14] MA Y X, ZHAO F, LIU J, et al. Tensile experiment and numerical simulation of carbon fiber and polyvinyl alcohol fiber helical auxetic yarns[J]. Fibers and Polymers, 2023, 24(8): 2951-2965. [15] 马衍轩, 徐亚茜, 于 霞, 等. 泡沫混凝土的负泊松比设计与静载力学特性研究[J]. 材料导报, 2021, 35(24): 24068-24074. MA Y X, XU Y Q, YU X, et al. Negative Poisson’s ratio design and static load characteristics of foam concrete[J]. Materials Reports, 2021, 35(24): 24068-24074 (in Chinese). [16] ZHAO G Q, FAN Y C, TANG C, et al. Preparation and compressive properties of cementitious composites reinforced by 3D printed cellular structures with a negative Poisson’s ratio[J]. Developments in the Built Environment, 2024, 17: 100362. [17] 赵 飞, 朱鹏飞, 李梦瑶, 等. 钢筋混凝土的负泊松比设计与抗弯性能研究[J]. 硅酸盐通报, 2023, 42(5): 1640-1649. ZHAO F, ZHU P F, LI M Y, et al. Negative Poisson ratio design and flexural performance of reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1640-1649 (in Chinese). [18] 李 斌, 付 涛. 星型负泊松比蜂窝夹层板的低速冲击动态响应分析[J/OL]. 振动工程学报, 2023: 1-11 (2023-05-30)[2024-01-03]. http://kns.cnki.net/kcms/detail/32.1349.TB.20230529.1635.003.html. LI B, FU T. Dynamic response analysis of star shaped honeycomb sandwich panels with negative Poisson’s ratio under low velocity impact. Journal of Vibration Engineering, 2023: 1-11 (2023-05-30)[2024-01-03]. http://kns.cnki.net/kcms/detail/32.1349.TB.20230529.1635.003.html (in Chinese). [19] HASSAN Z, SAKAI Y Y, WATANABE K. Penetration resistance and damage characteristics of cementitious mortar with partially replaced waste tire rubber as a filler against high-speed impact loading[J]. Journal of Building Engineering, 2023, 80: 108039. [20] YE J B, WANG Y T, CAI J, et al. Influence of different combinations of impact mass and velocity with identical kinetic energy or momentum on the impact response of RC piles[J]. Marine Structures, 2023, 91: 103462. [21] ZHONG J H, SONG C M, XU J W, et al. Experimental and numerical simulation study on failure mode transformation law of reinforced concrete beam under impact load[J]. International Journal of Impact Engineering, 2023, 179: 104645. [22] 刘文建. 霍普金森杆在复合材料动态测试中的应用[J]. 纤维复合材料, 2005, 22(2): 44-46. LIU W J. Application of Hopkinson bar in the dynamic test of composites[J]. Fiber Composites, 2005, 22(2): 44-46 (in Chinese). [23] 苏 骏, 白应华. 混凝土结构设计原理[M]. 北京: 清华大学出版社, 2017. SU J, BAI Y H. Principle of structural design[M]. Beijing: Tsinghua University Press, 2017 (in Chinese). [24] 赵行之, 宗 琦, 吕 闹, 等. 冲击荷载作用下橡胶混凝土动态力学性能研究[J]. 河南科技, 2022, 41(13): 73-79. ZHAO X Z, ZONG Q, LYU N, et al. Study on dynamic mechanical properties of rubber concrete under impact load[J]. Henan Science and Technology, 2022, 41(13): 73-79 (in Chinese). [25] 张海韬, 邓安仲, 陆 飞. 机械冲击防护柱胞夹芯复合材料及其吸能性能[J]. 合成纤维, 2023, 52(9): 54-59. ZHANG H T, DENG A Z, LU F. Mechanical impact protection column cellular sandwich composites and their energy-absorbing properties[J]. Synthetic Fiber in China, 2023, 52(9): 54-59 (in Chinese). |