[1] 刘志强. 矿井建设技术发展概况及展望[J]. 煤炭工程, 2018, 50(6): 44-46+50. LIU Z Q. Overview and outlook on development of mine construction technologies[J]. Coal Engineering, 2018, 50(6): 44-46+50 (in Chinese). [2] 臧培刚, 王 伟, 马宏强, 等. 超深厚冲积层冻结井筒施工关键技术研究[J]. 煤炭科学技术, 2017, 45(8): 90-97+141. ZANG P G, WANG W, MA H Q, et al. Research on key construction technologies of frozen shaft in ultra deep and thick alluvium[J]. Coal Science and Technology, 2017, 45(8): 90-97+141 (in Chinese). [3] 谢和平. 深部岩体力学与开采理论研究进展. 煤炭学报[J]. 2019, 44(5): 1283-1305. XIE H P. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305 (in Chinese). [4] 许 影, 汪仁和. 混凝土井壁水化热对白垩侏罗系地层冻结壁的影响[J]. 煤炭工程, 2011(12): 102-105. XU Y, WANG R H. Hydrated heat of mine shaft concrete liner affected to mine shaft freezing wall in cretaceous Jurassic strata[J]. Coal Engineering, 2011(12): 102-105 (in Chinese). [5] 刘志强, 宋朝阳, 程守业, 等. 千米级竖井全断面科学钻进装备与关键技术分析[J]. 煤炭学报, 2020, 45(11): 3645-3656. LIU Z Q, SONG C Y, CHENG S Y, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts[J]. Journal of China Coal Society, 2020, 45(11): 3645-3656 (in Chinese). [6] 奚家米, 屈永龙, 杨更社, 等. 西部白垩系冻结立井外壁受力与温度实测研究[J]. 煤矿安全, 2014, 45(8): 68-71. XI J M, QU Y L, YANG G S, et al. In situ measurement study on stress and temperature of frozen outer shaft lining in western cretaceous strata[J]. Safety in Coal Mines, 2014, 45(8): 68-71 (in Chinese). [7] 孙仕元, 姚直书. 冻结井壁高强高性能混凝土配合比设计及应用[J]. 建井技术, 2017, 38(1): 1-4. SUN S Y, YAO Z S. Mix ratio design and application of high strength and high performance concrete to mine freezing shaft liner[J]. Mine construction Technology, 2017, 38(1): 1-4 (in Chinese). [8] 张 涛, 杨维好, 陈国华, 等. 大体积高性能混凝土冻结井壁水化热温度场实测与分析[J]. 采矿与安全工程学报, 2016, 33(2): 290-296. ZHANG T, YANG W H, CHEN G H, et al. Monitoring and analysis of hydration heat temperature field for high performance mass concrete freezing shaft lining[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 290-296 (in Chinese). [9] 孟成功, 李 磊, 胡明媚, 等. 高折压比混凝土配合比及性能研究[J]. 混凝土, 2022(3): 75-78. MENG C G, LI L, HU M M, et al. Study on mix proportion and performance of high flexural compression ratio concrete[J]. Concrete, 2022(3): 75-78 (in Chinese). [10] 刘娟红, 周昱程, 杨海涛, 等. 冲击荷载作用下的井壁混凝土能量与损伤特性[J]. 煤炭学报, 2019, 44(10): 2983-2989. LIU J H, ZHOU Y C, YANG H T, et al. Energy and damage characteristics of shaft lining concrete subjected to impact[J]. Journal of China Coal Society, 2019, 44(10): 2983-2989 (in Chinese). [11] NANCY K, HASSAN E H, TAMER E M, et al. Influence of steel fibers on the flexural performance of concrete incorporating recycled concrete aggregates and dune sand[J]. Journal of Sustainable Cement-Based Materials, 2021, 10(3): 165-192. [12] ASLANI F, NEJADI S. Self-compacting concrete incorporating steel and polypropylene fibers: compressive and tensile strengths, moduli of elasticity and rupture, compressive stress-strain curve, and energy dissipated under compression[J]. Composites Part B: Engineering, 2013, 53: 121-133. [13] 杨 龙, 徐 进, 薛维培. CF80高强钢纤维井壁混凝土力学特性研究[J]. 煤矿安全, 2018, 49(12): 59-63. YANG L, XU J, XUE W P. Study on mechanical properties of CF80 high strength steel fiber shaft lining concrete[J]. Safety in Coal Mines, 2018, 49(12): 59-63 (in Chinese). [14] 刘云强, 左晓宝, 黎 亮, 等. 硫酸盐侵蚀下硬化水泥浆体微结构演变及膨胀过程的数值模拟[J]. 硅酸盐通报, 2022, 41(12): 4128-4138. LIU Y Q, ZUO X B, LI L, et al. Numerical simulation on microstructure evolution and expansion process of hardened cement paste under sulfate attack[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4128-4138 (in Chinese). [15] 孔德成, 安明喆, 贾方方. 聚丙烯粗纤维超高性能混凝土的断裂性能[J]. 公路, 2021, 66(5): 281-285. KONG D C, AN M Z, JIA F F. Fracture properties of polypropylene coarse fiber ultra-high performance concrete[J]. Highway, 2021, 66(5): 281-285 (in Chinese). [16] 王 成, 李桢怡, 葛广华, 等. 复合盐侵蚀-干湿耦合作用下聚丙烯纤维混凝土抗盐蚀性能试验研究[J]. 混凝土, 2023(4): 29-35+39. WANG C, LI Z Y, GE G H, et al. Experimental study on salt corrosion resistance of polypropylene fiber concrete under the linked action of composite salt erosion-drying-wetting[J]. Concrete, 2023(4): 29-35+39 (in Chinese). [17] 龚明子, 钱潘悦, 王 涛, 等. 粉煤灰的颗粒特征对混凝土流变性能的影响[J]. 混凝土, 2023(9): 122-125. GONG M Z, QIAN P Y, WANG T, et al. Effect of fly ash particle characteristics on rheological properties of concrete[J]. Concrete, 2023(9): 122-125 (in Chinese). [18] 曹润倬, 周茗如, 周 群, 等. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689. CAO R Z, ZHOU M R, ZHOU Q, et al. Effect of ultra-fine fly ash on rheological properties, mechanical properties and microstructure of ultra-high performance concrete[J]. Materials Reports, 2019, 33(16): 2684-2689 (in Chinese). [19] 胡 萍. 粉煤灰对高性能混凝土抗裂性能的影响研究[J]. 砖瓦, 2023(12): 53-55. HU P. Study on effect of fly ash on crack resistance of high-performance concrete[J]. Brick-Tile, 2023(12): 53-55 (in Chinese). [20] BASSUONI M T, RAHMAN M M. Response of concrete to accelerated physical salt attack exposure[J]. Cement and Concrete Research, 2016, 79: 395-408. [21] 李 琴, 杨岳斌, 刘 君, 等. 我国粉煤灰利用现状及展望[J]. 能源研究与管理, 2022(1): 29-34. LI Q, YANG Y B, LIU J, et al. Present status and prospect of fly ash utilization in China[J]. Energy Research and Management, 2022(1): 29-34 (in Chinese). [22] 薛维培, 姚直书, 宋海清, 等. 高强高抗渗冻结井壁混凝土配制及其试验研究[J]. 煤炭技术, 2018, 37(1): 22-25. XUE W P, YAO Z S, SONG H Q, et al. High strength high permeability frozen shaft lining concrete preparation and its experimental study[J]. Coal Technology, 2018, 37(1): 22-25 (in Chinese). [23] 李晓琴, 周 旭, 李世华. 粉煤灰掺量对PVA-ECC性能的影响[J]. 硅酸盐通报, 2020, 39(12): 3783-3790. LI X Q, ZHOU X, LI S H. Effect of fly ash content on properties of PVA-ECC[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3783-3790 (in Chinese). [24] YAO Z S, WANG C, XUE W P, et al. Experimental study on the dynamic mechanical properties of high-performance hybrid fiber-reinforced concrete of mine shaft lining[J]. Journal of Materials Research and Technology, 2021, 14: 888-900. [25] 方 秦, 洪 建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(5): 1-14+26. FANG Q, HONG J, ZHANG J H, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanic, 2014, 31(5): 1-14+26 (in Chinese). [26] 王圣贤, 王雪芳, 姜绍飞. 粉煤灰和矿渣对自密实混凝土早龄期抗裂性的影响[J]. 沈阳建筑大学学报(自然科学版), 2022, 38(6): 1104-1113. WANG S X, WANG X F, JIANG S F. Early-age cracking behavior of self-compacting concrete mixed with fly ash and slag[J]. Journal of Shenyang Jianzhu University (Natural Science), 2022, 38(6): 1104-1113 (in Chinese). [27] 张 平, 姚直书, 薛维培, 等. 混杂纤维井壁混凝土力学性能和微观结构研究[J]. 安徽理工大学学报(自然科学版), 2020, 40(3): 33-38. ZHANG P, YAO Z S, XUE W P, et al. Study on mechanical properties and microstructure of hybrid fiber shaft lining concrete[J]. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(3): 33-38 (in Chinese). [28] 梁宁慧, 曹郭俊, 刘新荣, 等. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158. LIANG N H, CAO G J, LIU X R, et al. Study on bridging stress of polypropylene fiber based on three-point bending test[J]. Materials Reports, 2020, 34(2): 2153-2158 (in Chinese). [29] ZHANG H, WANG B, et al. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154-167. [30] 王成平, 张佳生. 基于核磁共振技术的硫酸盐侵蚀下混凝土孔隙率发展规律分析[J]. 山东科学, 2022, 35(1): 65-72+98. WANG C P, ZHANG J S. Porosity development analysis of concrete under sulfate attack based on nuclear magnetic resonance[J]. Shandong Science, 2022, 35(1): 65-72+98 (in Chinese). [31] DENG Y F, YUE X B, LIU S Y, et al. Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution[J]. Engineering Geology, 2015, 193: 146-152. [32] 黄 华, 郭梦雪, 张 伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(3): 74-84. HUANG H, GUO M X, ZHANG W, et al. Mechanical property and microstructure of geopolymer concrete based on fly ash and slag[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 74-84 (in Chinese). |