[1] 庞超明, 唐志远, 杨志远, 等. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 80-90. PANG C M, TANG Z Y, YANG Z Y, et al. Early strengthening agent in cementitious composites and its function mechanism: a review[J]. Materials Reports, 2023, 37(9): 80-90 (in Chinese). [2] 许永东, 陈小平, 赵秋勇, 等. 水泥助磨剂研究现状及展望[J]. 材料导报, 2013, 27(增刊1): 314-316+338. XU Y D, CHEN X P, ZHAO Q Y, et al. Research status and prospect of cement grinding AIDS[J]. Materials Reports, 2013, 27(supplement 1): 314-316+338 (in Chinese). [3] 唐晓博, 孙振平, 刘 毅. 三乙醇胺助磨剂对水泥与聚羧酸系减水剂适应性的影响及其机理[J]. 材料导报, 2018, 32(4): 641-645. TANG X B, SUN Z P, LIU Y. Influence of triethanolamine grinding aid on the compatibility between cement and polycarboxylate superplasticizer and its mechanism[J]. Materials Review, 2018, 32(4): 641-645 (in Chinese). [4] WANG Y F, SHI C J, MA Y H, et al. Accelerators for shotcrete-chemical composition and their effects on hydration, microstructure and properties of cement-based materials[J]. Construction and Building Materials, 2021, 281: 122557. [5] AGGOUN S, CHEIKH-ZOUAOUI M, CHIKH N, et al. Effect of some admixtures on the setting time and strength evolution of cement pastes at early ages[J]. Construction and Building Materials, 2008, 22(2): 106-110. [6] LI H X, XU C, DONG B Q, et al. Differences between their influences of TEA and TEA·HCl on the properties of cement paste[J]. Construction and Building Materials, 2020, 239: 117797. [7] 中华人民共和国全国人民代表大会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[M]. 北京: 人民出版社, 2021. The National People’s Congress of the People’s Republic of China. The 14th five year plan for national economic and social development of the People’s Republic of China and the outline of long-term objectives for 2035[M]. Beijing: People’s Publishing House, 2021 (in Chinese). [8] RAMACHANDRAN V S. Hydration of cement: role of triethanolamine[J]. Cement and Concrete Research, 1976, 6(5): 623-631. [9] 史才军, 刘 慧, 李平亮, 等. 三异丙醇胺对石灰石硅酸盐水泥的水化机理及微观结构的影响[J]. 硅酸盐学报, 2011, 39(10): 1673-1681. SHI C J, LIU H, LI P L, et al. Effects of triisopropanolamine on hydration and microstructure of Portland limestone cement[J]. Journal of the Chinese Ceramic Society, 2011, 39(10): 1673-1681 (in Chinese). [10] 孔祥明, 路振宝, 闫 娟, 等. 三乙醇胺对水化过程中水泥浆体液相离子浓度的影响[J]. 硅酸盐学报, 2013, 41(7): 981-986. KONG X M, LU Z B, YAN J, et al. Influence of triethanolamine on elemental concentrations in aqueous phase of hydrating cement pastes[J]. Journal of the Chinese Ceramic Society, 2013, 41(7): 981-986 (in Chinese). [11] 马保国, 许永和, 董荣珍. 三乙醇胺对水泥初始结构和力学性能的影响[J]. 建筑材料学报, 2006, 9(1): 6-9. MA B G, XU Y H, DONG R Z. Influence of triethanolmine on the initial structure formation and mechanical properties of cement[J]. Journal of Building Materials, 2006, 9(1): 6-9 (in Chinese). [12] 王剑锋, 常 磊, 王 艳, 等. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报, 2023, 37(11): 119-127. WANG J F, CHANG L, WANG Y, et al. Research status of improving cementitious activity and volume stability of steel slag[J]. Materials Reports, 2023, 37(11): 119-127 (in Chinese). [13] 韩静云, 宋旭艳, 郜志海. 三乙醇胺对锰渣-水泥复合体系早期水化过程的影响[J]. 材料导报, 2010, 24(18): 69-71+75. HAN J Y, SONG X Y, GAO Z H. Influence of triethanolamine on early hydration process of cement paste containing manganese slag[J]. Materials Review, 2010, 24(18): 69-71+75 (in Chinese). [14] 张 丰, 白 银, 蔡跃波, 等. 5 ℃时掺低温早强剂水泥的早期水化及微观结构[J]. 硅酸盐学报, 2020, 48(2): 211-221. ZHANG F, BAI Y, CAI Y B, et al. Early hydration and microstructure of cement pastes mixed with low-temperature early strength accelerator at 5 ℃[J]. Journal of the Chinese Ceramic Society, 2020, 48(2): 211-221 (in Chinese). [15] AIAD I, MOHAMMED A A, ABO-EL-ENEIN S A. Rheological properties of cement pastes admixed with some alkanolamines[J]. Cement and Concrete Research, 2003, 33(1): 9-13. [16] ASSAAD J J. Effect of energy and temperature on performance of alkanolamine processing additions[J]. Minerals Engineering, 2017, 102: 30-41. [17] HUANG T Y, WANG D M, LIU Z. The influence of alcohol amine admixtures on the macroscopic properties of Portland cement paste[J]. Applied Mechanics and Materials, 2014, 525: 573-579. [18] ZHANG Y, ZHANG X, CAI X, et al. A further understanding on the strength development of cement pastes in the presence of triisopropanolamine used in CRTS III slab track[J]. Construction and Building Materials, 2022, 315: 125743. [19] ZOU F B, TAN H B, HE X Y, et al. Effect of triisopropanolamine on compressive strength and hydration of steaming-cured cement-fly ash paste[J]. Construction and Building Materials, 2018, 192: 836-845. [20] ZHANG F, BAI Y, CAI Y B, et al. Effect of triisopropanolamine on the compressive strength and early hydration of cement at low temperature[J]. Journal of Wuhan University of Technology-Mater Science Edition, 2020, 35(3): 611-619. [21] LIAO X L, HUANG H, HE F Q, et al. Microstructural characterization of cement in the presence of alkanolamines[J]. Materials Today Communications, 2021, 27: 102386. [22] 徐芝强, 徐 凯, 孙晋峰, 等. 新型链烷醇胺对水泥水化硬化的影响[J]. 硅酸盐学报, 2017, 45(8): 1113-1120. XU Z Q, XU K, SUN J F, et al. Effect of new alkanolamines on cement hydration and hardening[J]. Journal of the Chinese Ceramic Society, 2017, 45(8): 1113-1120 (in Chinese). [23] XU Z Q, LI W F, SUN J F, et al. Research on cement hydration and hardening with different alkanolamines[J]. Construction and Building Materials, 2017, 141: 296-306. [24] ZUNINO F, SCRIVENER K. Assessing the effect of alkanolamine grinding aids in limestone calcined clay cements hydration[J]. Construction and Building Materials, 2021, 266: 121293. [25] HAN J G, WANG K J, SHI J Y, et al. Mechanism of triethanolamine on Portland cement hydration process and microstructure characteristics[J]. Construction and Building Materials, 2015, 93: 457-462. [26] WANG J, KONG X M, YIN J H, et al. Impacts of two alkanolamines on crystallization and morphology of calcium hydroxide[J]. Cement and Concrete Research, 2020, 138: 106250. [27] HE Y, LIU S H, HOOTON R D, et al. Effects of TEA on rheological property and hydration performance of lithium slag-cement composite binder[J]. Construction and Building Materials, 2022, 318: 125757. [28] HE Y, LIU S H, ZHANG X, et al. Influence of triethanolamine on mechanical strength and hydration performance of blended cement containing fly ash, limestone and slag[J]. Journal of Building Engineering, 2021, 44: 102879. [29] HUANG H, LI X R, SHEN X D. Hydration of ternary cement in the presence of triisopropanolamine[J]. Construction and Building Materials, 2016, 111: 513-521. [30] ZHANG Y R, GAO L, CAI X P, et al. Influences of triethanolamine on the performance of cement pastes used in slab track[J]. Construction and Building Materials, 2020, 238: 117670. [31] LU Z C, KONG X M, JANSEN D, et al. Towards a further understanding of cement hydration in the presence of triethanolamine[J]. Cement and Concrete Research, 2020, 132: 106041. [32] RAMACHANDRAN V S. Influence of triethanolamine on the hydration characteristics of tricalcium silicate[J]. Journal of Applied Chemistry and Biotechnology, 1972, 22(11): 1125-1138. [33] ZHANG Y R, KONG X M, LU Z C, et al. Influence of triethanolamine on the hydration product of portlandite in cement paste and the mechanism[J]. Cement and Concrete Research, 2016, 87: 64-76. [34] HIRSCH T, LU Z C, STEPHAN D. Effect of different sulphate carriers on Portland cement hydration in the presence of triethanolamine[J]. Construction and Building Materials, 2021, 294: 123528. [35] LIU H, LIN H, LIU X Y, et al. Effects of triethanolamine on autogenous shrinkage and drying shrinkage of cement mortar[J]. Construction and Building Materials, 2021, 304: 124620. [36] GARTNER E, MYERS D. Influence of tertiary alkanolamines on Portland cement hydration[J]. Journal of the American Ceramic Society, 1993, 76(6): 1521-1530. [37] SHI Z G, SHI C J, LIU H, et al. Effects of triisopropanol amine, sodium chloride and limestone on the compressive strength and hydration of Portland cement[J]. Construction and Building Materials, 2016, 125: 210-218. [38] MA S H, LI W F, ZHANG S B, et al. Study on the hydration and microstructure of Portland cement containing diethanol-isopropanolamine[J]. Cement and Concrete Research, 2015, 67: 122-130. [39] JIA J Q, WANG Y M. Interactive effects of admixtures on the compressive strength development of Portland cement mortars[J]. Buildings, 2022, 12(4): 422. [40] 徐芝强, 李伟峰, 胡月阳, 等. 链烷醇胺对水泥水化过程及性能的影响[J]. 硅酸盐学报, 2016, 44(11): 1628-1635. XU Z Q, LI W F, HU Y Y, et al. Effect of alkanolamine on cement hydration process and performance[J]. Journal of the Chinese Ceramic Society, 2016, 44(11): 1628-1635 (in Chinese). [41] MA B G, ZHANG T, TAN H B, et al. Effect of TIPA on chloride immobilization in cement-fly ash paste[J]. Advances in Materials Science and Engineering, 2018, 2018: 4179421. [42] MA B G, ZHANG T, TAN H B, et al. Effect of triisopropanolamine on compressive strength and hydration of cement-fly ash paste[J]. Construction and Building Materials, 2018, 179: 89-99. [43] ZHANG T, MA B G, TAN H B, et al. Effect of TIPA on mechanical properties and hydration properties of cement-lithium slag system[J]. Journal of Environmental Management, 2020, 276: 111274. [44] ZHANG T, SUN Z P, YANG H J, et al. Enhancement of triisopropanolamine on the compressive strength development of cement paste incorporated with high content of wasted clay brick powder and its working mechanism[J]. Construction and Building Materials, 2021, 302: 124052. [45] DENG X F, GUO H Y, TAN H B, et al. Effect of organic alkali on hydration of GGBS-FA blended cementitious material activated by sodium carbonate[J]. Ceramics International, 2022, 48(2): 1611-1621. [46] LI C B, MA B G, TAN H B, et al. Effect of triisopropanolamine on chloride binding of cement paste with ground-granulated blast furnace slag[J]. Construction and Building Materials, 2020, 256: 119494. [47] WANG J, MA B G, TAN H B, et al. Hydration and mechanical properties of cement-marble powder system incorporating triisopropanolamine[J]. Construction and Building Materials, 2021, 266: 121068. [48] HUANG H, LI X R, AVET F, et al. Strength-promoting mechanism of alkanolamines on limestone-calcined clay cement and the role of sulfate[J]. Cement and Concrete Research, 2021, 147: 106527. [49] XU Z Q, LI W F, SUN J F, et al. Hydration of Portland cement with alkanolamines by thermal analysis[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(1): 37-47. [50] WANG Y F, LEI L, SHI C J. Effect of diethanolisopropanolamine and ethyldiisopropylamine on hydration and strength development of cement-fly ash-limestone ternary blend[J]. Cement and Concrete Composites, 2024, 145: 105354. [51] LU Z C, KONG X M, JANSEN D, et al. A comparative study of the effects of two alkanolamines on cement hydration[J]. Advances in Cement Research, 2022, 34(2): 47-56. [52] LU X L, YE Z M, ZHANG L N, et al. The influence of ethanol-diisopropanolamine on the hydration and mechanical properties of Portland cement[J]. Construction and Building Materials, 2017, 135: 484-489. [53] LU X L, WANG S X, YE Z M, et al. Study on the hydration product of ettringite in cement paste with ethanol-diisopropanolamine[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 1007-1016. [54] WANG J F, CHANG L, YUE D Y, et al. Effect of chelating solubilization via different alkanolamines on the dissolution properties of steel slag[J]. Journal of Cleaner Production, 2022, 365: 132824. |