[1] 褚剑鸣. 混凝土裂缝产生原因、修补方法及控制措施[J]. 福建建材, 2008(5): 91-93. CHU J M. Causes, repair methods and control measures of concrete cracks[J]. Fujian Building Materials, 2008(5): 91-93 (in Chinese). [2] 张 君, 居贤春, 公成旭. 混凝土中的裂缝对氯盐侵蚀作用的影响[J]. 哈尔滨工程大学学报, 2010, 31(6): 720-724. ZHANG J, JU X C, GONG C X. Effect of cracks in concrete on chloride penetration[J]. Journal of Harbin Engineering University, 2010, 31(6): 720-724 (in Chinese). [3] 赵丽娜. 基于页岩陶砂固载微生物的自修复水泥基材料研究[D]. 南昌: 南昌大学, 2022. ZHAO L N. Study on self-repairing cement-based materials based on bacteria immobilized in shale pottery sand[D]. Nanchang: Nanchang University, 2022 (in Chinese). [4] 李宗源. 基于微生物矿化的混凝土表面覆膜和裂缝修复试验研究[D]. 北京: 北方工业大学, 2022. LI Z Y. Experimental research of concrete surface coating and crack remediation based on microbial mineralization[D]. Beijing: North China University of Technology, 2022 (in Chinese). [5] FRONCZYK J, JANEK M, SZELG M, et al. Immobilization of (bio-) healing agents for self-healing concrete technology: does it really ensure long-term performance?[J]. Composites Part B: Engineering, 2023, 266: 110997. [6] 冯 涛. 基于膨胀珍珠岩固载微生物的混凝土裂缝抗渗水性能及自修复机理分析[D]. 太原: 太原理工大学, 2018. FENG T. Analysis on anti-seepage performance and self-healing mechanism of concrete cracks based on immobilizing bacteria in expanded perlite[D]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese). [7] 姜 鲁. 基于好氧-厌氧二元微生物矿化体系的自修复混凝土性能研究[D]. 太原: 太原理工大学, 2020: 4-10. JIANG L. Study on properties of self-healing concrete based on aerobic-anaerobic binary microbial mineralization system[D]. Taiyuan: Taiyuan University of Technology, 2020: 4-10 (in Chinese). [8] WANG J Y, SOENS H, VERSTRAETE W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56: 139-152. [9] 袁 杰, 陈 歆, 何虹霖, 等. 微生物矿化作用下混凝土裂缝修复与性能补偿[J]. 吉林大学学报(工学版), 2020, 50(2): 641-647. YUAN J, CHEN X, HE H L, et al. Repair and rejuvenation of cracked concrete by microbiologically-induced calcite-precipitation[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(2): 641-647 (in Chinese). [10] WANG X Z, XU J, WANG Z P, et al. Use of recycled concrete aggregates as carriers for self-healing of concrete cracks by bacteria with high urease activity[J]. Construction and Building Materials, 2022, 337: 127581. [11] XU J, TANG Y H, WANG X Z, et al. Application of ureolysis-based microbial CaCO3 precipitation in self-healing of concrete and inhibition of reinforcement corrosion[J]. Construction and Building Materials, 2020, 265: 120364. [12] SU Y L, ZHENG T W, QIAN C X. Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete[J]. Construction and Building Materials, 2021, 273: 121740. [13] AMIRI Y, HASSANINASAB S, CHEHRI K, et al. Investigating the effect of adding bacillus bacteria and nano-clay on cement mortar properties[J]. Case Studies in Construction Materials, 2022, 17: e01167. [14] SHAHEEN N, KHUSHNOOD R A, KHALIQ W, et al. Synthesis and characterization of bio-immobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete[J]. Construction and Building Materials, 2019, 226: 492-506. [15] LUO M, QIAN C X, LI R Y. Factors affecting crack repairing capacity of bacteria-based self-healing concrete[J]. Construction and Building Materials, 2015, 87: 1-7. [16] DU X Q, SI Z, QI D Y, et al. Optimization of spore production and activation conditions of concrete crack healing bacteria and research on crack repair effect[J]. Construction and Building Materials, 2023, 394: 132140. [17] 任立夫, 钱春香. 碳酸酐酶微生物沉积碳酸钙修复水泥基材料表面裂缝[J]. 硅酸盐学报, 2014, 42(11): 1389-1395. REN L F, QIAN C X. Restoration of cracks on surface of cement-based materials by carbonic anhydrase microbiologically precipitation calcium carbonate[J]. Journal of the Chinese Ceramic Society, 2014, 42(11): 1389-1395 (in Chinese). [18] QIAN C X, CHEN H C, REN L F, et al. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism[J]. Frontiers in Microbiology, 2015, 6: 1225. [19] LI Z F, LIU A Z, SUN C H, et al. Biomineralization Process of CaCO3 precipitation induced by bacillus mucilaginous and its potential application in microbial self-healing concrete[J]. Applied Biochemistry and Biotechnology, 2024, 196(4): 1896-1920. [20] ZHENG T W, QIAN C X. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Process Biochemistry, 2020, 91: 271-281. [21] ERŞAN Y Ç, GRUYAERT E, LOUIS G, et al. Self-protected nitrate reducing culture for intrinsic repair of concrete cracks[J]. Frontiers in Microbiology, 2015, 6: 1228. [22] ERŞAN Y Ç, DE BELIE N, BOON N. Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment[J]. Biochemical Engineering Journal, 2015, 101: 108-118. [23] SONMEZ M, ERŞAN Y Ç. Production and compatibility assessment of denitrifying biogranules tailored for self-healing concrete applications[J]. Cement and Concrete Composites, 2022, 126: 104344. [24] LUO J, CHEN X B, CRUMP J, et al. Interactions of fungi with concrete: significant importance for bio-based self-healing concrete[J]. Construction and Building Materials, 2018, 164: 275-285. [25] 陈业伟, 郑仲剑, 裴炎炎, 等. 混凝土裂缝微生物修复技术的研究现状与进展[J]. 南华大学学报(自然科学版), 2022, 36(1): 7-13+51. CHEN Y W, ZHENG Z J, PEI Y Y, et al. Research status and progress of microbial repair technology for concrete cracks[J]. Journal of University of South China (Science and Technology), 2022, 36(1): 7-13+51 (in Chinese). [26] 徐 晶, 王先志. 低碱胶凝材料负载微生物应用于混凝土的开裂自修复[J]. 清华大学学报(自然科学版), 2019, 59(8): 601-606. XU J, WANG X Z. Self-healing of concrete cracks by microorganisms loaded in low-alkali cementitious material[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(8): 601-606 (in Chinese). [27] 高瑞晓, 王剑云. 微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展[J]. 材料导报, 2023, 37(1): 96-105. GAO R X, WANG J Y. Research progress of microbial mineralization and deposition of calcium carbonate technology for repairing existing micro-cracks in concrete: a review[J]. Materials Reports, 2023, 37(1): 96-105 (in Chinese). [28] 李玉白. 混凝土中微生物自修复的微观修复过程及表征[D]. 深圳: 深圳大学, 2018. LI Y B. Microscopic repair process and characterization of microbial self-repair in concrete[D]. Shenzhen: Shenzhen University, 2018 (in Chinese). [29] 李 珠, 冯 涛, 周梦君, 等. 基于科式芽孢杆菌矿化沉积的混凝土裂缝自修复性能试验研究[J]. 混凝土, 2017(6): 5-8. LI Z, FENG T, ZHOU M J, et al. Experimental study on self-healing performance of concrete cracks based on mineralization of Bacillus cohnii[J]. Concrete, 2017(6): 5-8 (in Chinese). [30] 潘庆峰. 混凝土裂缝的微生物自修复机理及自修复剂研究[D]. 南京: 东南大学, 2012: 3-10. PAN Q F. Studying microbial self-healing mechanisms and self-repairing concrete crack for concrete crack[D]. Nanjing: Southeast University, 2012: 3-10 (in Chinese). [31] 钱春香, 任立夫, 荣 辉, 等. 一种用于修复水泥基材料裂缝的方法: CN103342484A[P]. 2013-10-09. QIAN C X, REN L F, RONG H, et al. A method for repairing cracks in cement-based materials: CN103342484A[P]. 2013-10-09 (in Chinese). [32] 任立夫. 微生物修复水泥基材料早期裂缝研究[D]. 南京: 东南大学, 2015. REN L F. Research on restoration of early age cracks in cement-based materials by microbe[D]. Nanjing: Southeast University, 2015 (in Chinese). [33] 詹其伟. 微生物捕碳浅层矿化胶结沙土及其抑尘应用[D]. 南京: 东南大学, 2018. ZHAN Q W. Cementation of sandy soil by shallow mineralization of microbe capturing carbon dioxide and application in fugitive dust suppresion[D]. Nanjing: Southeast University, 2018 (in Chinese). [34] 任立夫, 钱春香. 碳酸酐酶微生物诱导矿化修复混凝土裂缝可行性探究[J]. 中国科技论文在线精品论文, 2015, 8(10): 1022-1031. REN L F, QIAN C X. Research on the feasibility of carbonic anhydrase microbial induced mineralization to repair concrete cracks[J]. China Science and Technology Paper Online Boutique Paper, 2015, 8(10): 1022-1031 (in Chinese). [35] ZHU Y P, WU M, GAO N Y, et al. Removal of antimonate from wastewater by dissimilatory bacterial reduction: role of the coexisting sulfate[J]. Journal of Hazardous Materials, 2018, 341: 36-45. [36] ERŞAN Y Ç, VERBRUGGEN H, DE GRAEVE I, et al. Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion[J]. Cement and Concrete Research, 2016, 83: 19-30. [37] VAN PAASSEN L A, DAZA C M, STAAL M, et al. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36(2): 168-175. [38] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites, 2011, 33(7): 763-770. [39] 周梦君. 基于膨胀珍珠岩固载微生物的混凝土裂缝宽度修复及基本力学性能初探[D]. 太原: 太原理工大学, 2018. ZHOU M J. Preliminary study on crack-healing and basic mechanical properties of concrete with expanded perlite as microbial carrier[D]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese). [40] 周梦君, 张家广, 李 珠, 等. 基于微生物矿化沉积的裂缝自修复混凝土抗压强度试验研究[J]. 混凝土, 2018(3): 35-39. ZHOU M J, ZHANG J G, LI Z, et al. Experimental study on compressive strength of crack-healing concrete based on microbial mineralization[J]. Concrete, 2018(3): 35-39 (in Chinese). [41] 阮 华, 刘 琦, 王小山, 等. 胶体化学法制备人造膨胀珍珠岩轻质保温材料研究[J]. 硅酸盐通报, 2015, 34(6): 1543-1547. RUAN H, LIU Q, WANG X S, et al. Preparation of man-made expanded perlite lightweight thermal insulation materials by colloid chemistry method[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1543-1547 (in Chinese). [42] ZHANG X, JIN Z K, LI M, et al. Effects of carrier on the performance of bacteria-based self-healing concrete[J]. Construction and Building Materials, 2021, 305: 124771. [43] 金泽康. 核壳载体对微生物自修复混凝土自愈合及基本性能的影响[D]. 南京: 东南大学, 2021. JIN Z K. Effect of core-shell carrier on self-healing and basic properties of microbial self-healing concrete[D]. Nanjing: Southeast University, 2021 (in Chinese). [44] YUAN L, LIANG G Z, XIE J Q, et al. Synthesis and characterization of microencapsulated dicyclopentadiene with melamine-formaldehyde resins[J]. Colloid and Polymer Science, 2007, 285(7): 781-791. [45] WANG J Y, MIGNON A, SNOECK D, et al. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing[J]. Frontiers in Microbiology, 2015, 6: 1088. [46] 程文凤. 微胶囊包埋的微生物自修复混凝土裂缝过程性能研究[D]. 深圳: 深圳大学, 2016. CHENG W F. Study on the performance of micro-encapsulated microorganisms in self-repairing concrete cracks[D]. Shenzhen: Shenzhen University, 2016 (in Chinese). [47] KHUSHNOOD R A, ALI QURESHI Z, SHAHEEN N, et al. Bio-mineralized self-healing recycled aggregate concrete for sustainable infrastructure[J]. Science of the Total Environment, 2020, 703: 135007. [48] XIANG J C, SONG Y Y, SHU H, et al. Expanded polystyrene (EPS) particles as a carrier to improve the growth of microorganisms in concrete[J]. Journal of Cleaner Production, 2022, 369: 133363. [49] XU J, WANG X Z. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material[J]. Construction and Building Materials, 2018, 167: 1-14. [50] KHALIQ W, EHSAN M B. Crack healing in concrete using various bio influenced self-healing techniques[J]. Construction and Building Materials, 2016, 102: 349-357. [51] MUYNCK W, COX K, DE BELIE N, et al. Bacterial carbonate precipitation as an alternative surface treatment for concrete[J]. Construction and Building Materials, 2008, 22(5): 875-885. [52] 张立卿, 边明强, 王云洋, 等. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 82-104. ZHANG L Q, BIAN M Q, WANG Y Y, et al. A review of some key technologies and methods used for evaluating the healing performance of self-healing concrete[J]. Materials Reports, 2024, 38(9): 82-104 (in Chinese). [53] 李沛豪, 屈文俊. 细菌诱导碳酸钙沉积修复混凝土裂缝[J]. 土木工程学报, 2010, 43(11): 64-70. LI P H, QU W J. Remediation of concrete cracks by bacterially-induced calcium carbonate deposition[J]. China Civil Engineering Journal, 2010, 43(11): 64-70 (in Chinese). [54] LIU C, XING L, LIU H W, et al. Experimental on repair performance and complete stress-strain curve of self-healing recycled concrete under uniaxial loading[J]. Construction and Building Materials, 2021, 285: 122900. [55] JIANG L, JIA G H, WANG Y Z, et al. Optimization of sporulation and germination conditions of functional bacteria for concrete crack-healing and evaluation of their repair capacity[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10938-10948. [56] YANG D F, XU G B, DUAN Y, et al. Self-healing cement composites based on bleaching earth immobilized bacteria[J]. Journal of Cleaner Production, 2022, 358: 132045. [57] SILVA F B, DE BELIE N, BOON N, et al. Production of non-axenic ureolytic spores for self-healing concrete applications[J]. Construction and Building Materials, 2015, 93: 1034-1041. [58] ACHAL V, MUKERJEE A, SUDHAKARA REDDY M. Biogenic treatment improves the durability and remediates the cracks of concrete structures[J]. Construction and Building Materials, 2013, 48: 1-5. [59] TZIVILOGLOU E, WIKTOR V, JONKERS H M, et al. Selection of nutrient used in biogenic healing agent for cementitious materials[J]. Frontiers in Materials, 2017, 4: 15. [60] NGUYEN T H, GHORBEL E, FARES H, et al. Bacterial self-healing of concrete and durability assessment[J]. Cement and Concrete Composites, 2019, 104: 103340. [61] BHASKAR S, ANWAR HOSSAIN K M, LACHEMI M, et al. Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites[J]. Cement and Concrete Composites, 2017, 82: 23-33. [62] MUYNCK W, DEBROUWER D, DE BELIE N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cement and Concrete Research, 2008, 38(7): 1005-1014. [63] 徐 晶, 杜雅莉, 白慧莉. 脲解型微生物诱导碳酸钙沉积研究[J]. 功能材料, 2016, 47(4): 4001-4005. XU J, DU Y L, BAI H L. Investigation on ureolytic microbiologically-induced calcium carbonate precipitation[J]. Journal of Functional Materials, 2016, 47(4): 4001-4005 (in Chinese). [64] 徐 晶, 姚 武. 微生物非脲解作用诱导碳酸钙沉积研究[J]. 同济大学学报(自然科学版), 2013, 41(10): 1542-1546. XU J, YAO W. Non-ureolytic microbiologically-induced calcium carbonate precipitation[J]. Journal of Tongji University (Natural Science), 2013, 41(10): 1542-1546 (in Chinese). [65] TITTELBOOM K, DE BELIE N, DE MUYNCK W, et al. Use of bacteria to repair cracks in concrete[J]. Cement and Concrete Research, 2010, 40(1): 157-166. [66] SIDDIQUE R, SINGH K, KUNAL, et al. Properties of bacterial rice husk ash concrete[J]. Construction and Building Materials, 2016, 121: 112-119. |