硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (4): 1181-1196.
• “玻璃材料与玻璃技术”专题(II) • 下一篇
任贝贝1, 刘亚鑫1, 黄欣1, 王霆1, 王娜1, 姜宏2, 熊春荣2, 郝红勋1
收稿日期:
2023-11-08
修订日期:
2023-12-19
出版日期:
2024-04-15
发布日期:
2024-04-17
通信作者:
黄 欣,博士,副教授。E-mail:x_huang@tju.edu.cn郝红勋,博士,教授。E-mail:hongxunhao@tju.edu.cn
作者简介:
任贝贝(2000—),女,硕士研究生。主要从事微晶玻璃方面的研究。E-mail:rbb_1124@tju.edu.cn
基金资助:
REN Beibei1, LIU Yaxin1, HUANG Xin1, WANG Ting1, WANG Na1, JIANG Hong2, XIONG Chunrong2, HAO Hongxun1
Received:
2023-11-08
Revised:
2023-12-19
Online:
2024-04-15
Published:
2024-04-17
摘要: Li2O-Al2O3-SiO2(LAS)系微晶玻璃由于具有热膨胀系数低、透明度高、力学性能优良等特点,被广泛应用于国防、建筑、化工、生物医药等多个领域,近年来受到研究者的广泛关注。本文综述了LAS系微晶玻璃的研究现状,介绍了LAS晶相体系及相关玻璃产品,对比分析了LAS系微晶玻璃各制备工艺的特点,并讨论了LAS系微晶玻璃晶核剂的种类及成核机理,最后总结了LAS系微晶玻璃性能、应用以及相应表征技术和测试手段,并指出了LAS系微晶玻璃存在的问题及未来的发展方向。
中图分类号:
任贝贝, 刘亚鑫, 黄欣, 王霆, 王娜, 姜宏, 熊春荣, 郝红勋. Li2O-Al2O3-SiO2系微晶玻璃的研究进展[J]. 硅酸盐通报, 2024, 43(4): 1181-1196.
REN Beibei, LIU Yaxin, HUANG Xin, WANG Ting, WANG Na, JIANG Hong, XIONG Chunrong, HAO Hongxun. Research Progress of Li2O-Al2O3-SiO2 System Glass-Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1181-1196.
[1] 孔 勇, 肖卓豪, 程 灵, 等. 高硬度透明微晶玻璃的研究进展与应用[J]. 陶瓷学报, 2022, 43(6): 994-1006. KONG Y, XIAO Z H, CHENG L, et al. Research progress and application status of high hardness transparent glass-ceramics[J]. Journal of Ceramics, 2022, 43(6): 994-1006 (in Chinese). [2] LUTPI H A, MOHAMAD H, ABDULLAH T K, et al. Effect of ZnO on the structural, physio-mechanical properties and thermal shock resistance of Li2O-Al2O3-SiO2 glass-ceramics[J]. Ceramics International, 2022, 48(6): 7677-7686. [3] 郭子琛. 低烧结温度锂铝硅微晶玻璃结合剂的研究[D]. 武汉: 武汉理工大学, 2021. GUO Z C. Study on low sintering temperature Li-Al-Si glass-ceramics binder[D]. Wuhan: Wuhan University of Technology, 2021 (in Chinese). [4] WANG F, GAO J, WANG H, et al. Flexural strength and translucent characteristics of lithium disilicate glass-ceramics with different P2O5 content[J]. Materials & Design, 2010, 31(7): 3270-3274. [5] LACZKA M, LACZKA K, CHOLEWA-KOWALSKA K, et al. Mechanical properties of a lithium disilicate strengthened lithium aluminosilicate glass-ceramic[J]. Journal of the American Ceramic Society, 2014, 97(2): 361-364. [6] ZHANG Y M, LI B B, LI D, et al. Microstructure, cytocompatibility, and chemical durability of chemically strengthened LAS (Li2O-Al2O3-SiO2) glass-ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42(13): 6110-6118. [7] LACZKA K, CHOLEWA-KOWALSKA K, ŚRODA M, et al. Glass-ceramics of LAS (Li2O-Al2O3-SiO2) system enhanced by ion-exchange in KNO3 salt bath[J]. Journal of Non-Crystalline Solids, 2015, 428: 90-97. [8] 韩 韩, 彭瑞欣, 李筱凡, 等. LAS微晶玻璃在离子交换后的去结晶相变化及机械性能表征[J]. 硅酸盐通报, 2021, 40(9): 3138-3144. HAN H, PENG R X, LI X F, et al. Crystallization phase change and mechanical properties characterization of LAS glass-ceramics after ion exchange[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 3138-3144 (in Chinese). [9] 田英良, 刘心浩, 李俊杰, 等. 超薄高强屏幕保护玻璃发展综述[J]. 硅酸盐通报, 2022, 41(11): 3937-3944. TIAN Y L, LIU X H, LI J J, et al. Review of ultrathin high strength screen protection glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3937-3944 (in Chinese). [10] 赵会峰, 姜 宏, 王洪鹃, 等. 一种适于化学钢化的高强度触摸屏玻璃组份: CN102557432A[P]. 2012-07-11. ZHAO H F, JIANG H, WANG H J, et al. A high-strength touch screen glass component suitable for chemical tempering: CN102557432A[P]. 2012-07-11 (in Chinese). [11] 夏文宝, 姜 宏, 鲁 鹏. 触摸屏盖板玻璃的发展及应用前景[J]. 玻璃与搪瓷, 2014, 42(1): 37-42+32. XIA W B, JIANG H, LU P. Development and prospects of high alumina silicate cover glass for touch screen[J]. Glass & Enamel, 2014, 42(1): 37-42+32 (in Chinese). [12] 刘红刚, 平文亮, 李 升, 等. 碱金属和碱土金属铝硅酸盐微晶盖板玻璃的研究现状和发展趋势[J]. 硅酸盐通报, 2022, 41(11): 3925-3936. LIU H G, PING W L, LI S, et al. Research status and development trend of alkali and alkaline earth aluminosilicate glass-ceramics cover glass[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3925-3936 (in Chinese). [13] 李要辉, 傅国英, 成惠峰, 等. 锂铝硅微晶玻璃自增强机制分析及表面强化技术进展[J]. 材料科学与工程学报, 2012, 30(1): 140-144. LI Y H, FU G Y, CHENG H F, et al. Self-reinforced mechanism of lithium aluminosilicate glass-ceramics and the progress of surface strengthening technology[J]. Journal of Materials Science and Engineering, 2012, 30(1): 140-144 (in Chinese). [14] 姜良宝, 厉 蕾, 张官理, 等. 化学强化铝硅酸盐玻璃研究进展[J]. 材料工程, 2014, 42(10): 106-112. JIANG L B, LI L, ZHANG G L, et al. Progress in research on chemical strengthened aluminosilicate glass[J]. Journal of Materials Engineering, 2014, 42(10): 106-112 (in Chinese). [15] 李溦长, 王 欣, 胡丽丽, 等. 高强度Li2O-Al2O3-SiO2体系微晶玻璃研究进展[J]. 硅酸盐通报, 2022, 41(11): 3795-3805+3825. LI W C, WANG X, HU L L, et al. Research progress on high-strength Li2O-Al2O3-SiO2 system glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3795-3805+3825 (in Chinese). [16] 沃尔夫拉姆·霍兰, 乔治·H. 比尔. 微晶玻璃技术[M]. 王双华译. 北京: 化学工业出版社, 2020. WOLFRAM H, GEORGE H. B. Glass-ceramics technology[M]. WANG S H trans. Beijing: Chemical Industry Press, 2020 (in Chinese). [17] 冯力立. 稀土掺杂Li2O-Al2O3-SiO2系透明玻璃陶瓷的制备与性能研究[D]. 长春: 长春理工大学, 2012. FENG L L. Preparation and properties of rare earth-doped Li2O-Al2O3-SiO2 transparent glass ceramics[D]. Changchun: Changchun University of Science and Technology, 2012 (in Chinese). [18] 楼贤春, 程金树, 郑伟宏, 等. 锂铝硅系统微晶玻璃热处理制度优化研究[J]. 玻璃, 2005, 32(3): 7-10+26. LOU X C, CHENG J S, ZHENG W H, et al. Investigation on schedule of heat treatment for lithium-aluminum-silicate glass ceramics[J]. Glass, 2005, 32(3): 7-10+26 (in Chinese). [19] XIAO Z H, LUO M H. Influence of heat treatment conditions on crystallization and thermal expansion of Las glass-ceramics[J]. Advanced Materials Research, 2010, 168/169/170: 1712-1716. [20] 姜 宏. 铝硅酸盐超薄电子玻璃[J]. 玻璃, 2022, 49(9): 1-8. JIANG H. Aluminosilicate ultra-thin electronic glass[J]. Glass, 2022, 49(9): 1-8 (in Chinese). [21] 谢东恒, 姜 宏. 玻璃熔窑全氧燃烧技术应用过程中存在的问题及分析[J]. 新型工业化, 2018, 8(1): 65-70. XIE D H, JIANG H. Problems and analysis in the application of the oxy-fuel combustion technology in glass furnace[J]. The Journal of New Industrialization, 2018, 8(1): 65-70 (in Chinese). [22] 姜 宏, 袁 坚, 张云峰, 等. 一种带非催化转化炉的玻璃窑炉燃烧工艺: CN113429114B[P]. 2022-09-27. JIANG H, YUAN J, ZHANG Y F, et al. The invention relates to a glass kiln combustion process with a non-catalytic converter: CN113429114B[P]. 2022-09-27 (in Chinese). [23] 朱利方, 姜 宏, 赵会峰, 等. 浮法玻璃下表面渗锡的影响因素[J]. 玻璃与搪瓷, 2014, 42(6): 29-32+50. ZHU L F, JIANG H, ZHAO H F, et al. A review of factors influencing on penetration of metallic tin into bottom surface of float glass[J]. Glass & Enamel, 2014, 42(6): 29-32+50 (in Chinese). [24] 曾淋林, 赵会峰, 王 琦, 等. 浮法生产高铝玻璃表面发朦成因分析及对策[J]. 材料科学与工程学报, 2022, 40(6): 1008-1011+1054. ZENG L L, ZHAO H F, WANG Q, et al. Cause analysis and countermeasure research on surface haze of high alumina glass produced by float process[J]. Journal of Materials Science and Engineering, 2022, 40(6): 1008-1011+1054 (in Chinese). [25] 谢 军, 谢 俊, 李淑晶. 氧化铈对锂铝硅微晶玻璃粘度和结构的影响[J]. 武汉理工大学学报, 2009, 31(22): 30-32. XIE J, XIE J, LI S J. Research on viscosity and structure in floating lithium aluminosilicate glass-ceramics[J]. Journal of Wuhan University of Technology, 2009, 31(22): 30-32 (in Chinese). [26] ZHENG W H, DAI Y, LIN M Z, et al. The effect of fluorine on the viscosity and crystallization of lithium aluminosilicate glasses[J]. Key Engineering Materials, 2012, 509: 346-352. [27] FIGUEIRA F C, BERNARDIN A M. Sinter-crystallization of spodumene LAS glass-ceramic tiles processed by single-firing[J]. Journal of Alloys and Compounds, 2019, 800: 525-531. [28] SOARES V O, RODRIGUES A M. Improvements on sintering and thermal expansion of lithium aluminum silicate glass-ceramics[J]. Ceramics International, 2020, 46(11): 17430-17436. [29] LUTPI H A, MOHAMAD H, ABDULLAH T K, et al. Effect of sintering treatment time on the sintering behaviour and thermal shock resistance of Li2O-Al2O3-SiO2 glass-ceramics[J]. Journal of Asian Ceramic Societies, 2021, 9(2): 507-518. [30] ZHU W W, GUO S M, ZOU H H, et al. Effect of ZrO2 on crystallization behavior and mechanical property of Dy2O3-Al2O3-SiO2 glasses[J]. Ceramics International, 2022, 48(15): 22468-22478. [31] WANG M C, LIN M H, LIU H S. Effect of TiO2 addition on the preparation of β-spodumene powders by sol-gel process[J]. Journal of Materials Research, 1999, 14(1): 196-203. [32] 殷海荣, 吕承珍. 溶胶-凝胶技术制备新型微晶玻璃[J]. 陶瓷, 2008(8): 8-11. YIN H R, LV C Z. Preparation of new glass-ceramic by sol-gel technique[J]. Ceramics, 2008(8): 8-11 (in Chinese). [33] XIAO Z H, LUO W Y, WANG S L. Thermal expansion property of P2O5 doped lithium aluminosilicate glass-ceramic synthesized by sol-gel process[J]. Materials Science Forum, 2010, 663/664/665: 1281-1284. [34] 夏 龙, 温广武, 宋 亮, 等. 溶胶-凝胶法制备锂铝硅微晶玻璃[J]. 材料导报, 2007, 21(增刊3): 256-258. XIA L, WEN G W, SONG L, et al. Preparation of Li-Al-Si glass-ceramics by sol-gel method[J]. Materials Reports, 2007, 21(supplement 3): 256-258 (in Chinese). [35] CHATTERJEE M, NASKAR M K. Sol-gel synthesis of lithium aluminum silicate powders: the effect of silica source[J]. Ceramics International, 2006, 32(6): 623-632. [36] 吴松全, 李亚娟, 王福平. Li2O-Al2O3-SiO2系微晶玻璃的制备方法和应用现状[J]. 硅酸盐通报, 2005, 24(1): 76-80. WU S Q, LI Y J, WANG F P. Preparation and application of Li2O-Al2O3-SiO2 glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2005, 24(1): 76-80 (in Chinese). [37] 吴松全, 王福平, 何利娜. 一种制备锂铝硅系微晶玻璃超细粉末的高分子网络凝胶法: CN1559943A[P]. 2005-01-05. WU S Q , W F P, HE L N. A polymer network gel method for preparing ultrafine powder of lithium aluminum silicon glass-ceramics: CN1559943A[P]. 2005-01-05 (in Chinese). [38] 吴松全, 刘宇艳, 王福平, 等. ZrO2对Li2O-Al2O3-SiO2微粉析晶行为的影响[J]. 硅酸盐通报, 2007, 26(5): 845-850. WU S Q, LIU Y Y, WANG F P, et al. Effect of ZrO2 on the crystallization behavior of Li2O-Al2O3-SiO2 glass-ceramic powders[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(5): 845-850 (in Chinese). [39] 李亚娟, 吴松全, 王福平. Y2O3对高分子网络凝胶法制备Li2O-Al2O3-SiO2系微晶玻璃性能的影响[J]. 硅酸盐通报, 2006, 25(4): 50-53. LI Y J, WU S Q, WANG F P. Influence of Y2O3 on the properties of Li2O-Al2O3-SiO2 system glass-ceramics by polyacrylamide gel method[J]. Bulletin of the Chinese Ceramic Society, 2006, 25(4): 50-53 (in Chinese). [40] 贾 鹏, 李亚娟. TiO2对凝胶法制备Li2O-Al2O3-SiO2系微晶玻璃析晶性能的影响[J]. 中国陶瓷, 2007, 43(8): 50-52. JIA P, LI Y J. The effect of TiO2 addition on the crystallization of Li2O-Al2O3-SiO2 system glass-ceramics[J]. China Ceramics, 2007, 43(8): 50-52 (in Chinese). [41] 孙 文, 王文彬, 宋嘉威, 等. 锂铝硅微晶玻璃的合成工艺、性能及其影响因素[J]. 当代化工研究, 2023(2): 168-170. SUN W, WANG W B, SONG J W, et al. Synthesis technology, properties and influencing factors of LAS glass ceramics[J]. Modern Chemical Research, 2023(2): 168-170 (in Chinese). [42] LI S, XU Y S, ZHANG X H, et al. Formation and crystal growth of needle-like rutile in glass-ceramics[J]. Journal of the European Ceramic Society, 2022, 42(7): 3313-3320. [43] HEADLEY T J, LOEHMAN R E. Crystallization of a glass-ceramic by epitaxial growth[J]. Journal of the American Ceramic Society, 1984, 67(9): 620-625. [44] HUANG S F, ZUJOVIC Z, HUANG Z H, et al. Crystallization of a high-strength lithium disilicate glass-ceramic: an XRD and solid-state NMR investigation[J]. Journal of Non-Crystalline Solids, 2017, 457: 65-72. [45] GLATZ P, COMTE M, CORMIER L, et al. Different roles of phosphorus in the nucleation of lithium aluminosilicate glasses[J]. Journal of Non-Crystalline Solids, 2018, 493: 48-56. [46] XIAO Z H, ZHOU J E, LUO W Y. Preparation and thermal properties of P2O5 doped Li2O-Al2O3-SiO2 glass-ceramics[J]. Advanced Materials Research, 2010, 146/147: 1574-1577. [47] VENKATESWARAN C, SREEMOOLANADHAN H, PANT B, et al. Processing Li2O-Al2O3-SiO2 (LAS) glass-ceramic with and without P2O5 through bulk and sintering route[J]. Journal of Non-Crystalline Solids, 2020, 550: 120289. [48] KLEEBUSCH E, PATZIG C, HÖCHE T, et al. Phase formation during crystallization of a Li2O-Al2O3-SiO2 glass with ZrO2 as nucleating agent: an X-ray diffraction and (S)TEM study[J]. Ceramics International, 2017, 43(13): 9769-9777. [49] KLEEBUSCH E, PATZIG C, KRAUSE M, et al. The effect of TiO2 on nucleation and crystallization of a Li2O-Al2O3-SiO2 glass investigated by XANES and STEM[J]. Scientific Reports, 2018, 8(1): 1-8. [50] GUO X Z, YANG H, CAO M. Nucleation and crystallization behavior of Li2O-Al2O3-SiO2 system glass-ceramic containing little fluorine and no-fluorine[J]. Journal of Non-Crystalline Solids, 2005, 351(24/25/26): 2133-2137. [51] 董 伟, 卢金山. MgF2含量对Li2O-Al2O3-SiO2微晶玻璃组织和光学性能的影响[J]. 材料热处理学报, 2011, 32(6): 21-25. DONG W, LU J S. Effect of MgF2 content on microstructure and optical properties of Li2O-Al2O3-SiO2 glass-ceramics[J]. Transactions of Materials and Heat Treatment, 2011, 32(6): 21-25 (in Chinese). [52] FENG D D, ZHU Y M, LI F F, et al. Influence investigation of CaF2 on the LAS based glass-ceramics and the glass-ceramic/diamond composites[J]. Journal of the European Ceramic Society, 2016, 36(10): 2579-2585. [53] KLEEBUSCH E, PATZIG C, KRAUSE M, et al. The titanium coordination state and its temporal evolution in Li2O-Al2O3-SiO2 (LAS) glasses with ZrO2 and TiO2 as nucleation agents: a XANES investigation[J]. Ceramics International, 2020, 46: 3498-3501. [54] 赵 莹, 陆 雷, 张乐军, 等. 晶核剂对Li2O-Al2O3-SiO2系微晶玻璃晶化过程和性能的影响[J]. 硅酸盐通报, 2007, 26(5): 896-900. ZHAO Y, LU L, ZHANG L J, et al. Effects of nucleation agent on the crystallization and properties of Li2O-Al2O3-SiO2 system glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(5): 896-900 (in Chinese). [55] 胡安民, 梁开明, 周 锋, 等. 形核剂对Li2O-Al2O3-SiO2系微晶玻璃晶化过程的影响[J]. 无机材料学报, 2005, 20(2): 279-284. HU A M, LIANG K M, ZHOU F, et al. Effect of nucleation agent on the crystallization of Li2O-Al2O3-SiO2 system glass[J]. Journal of Inorganic Materials, 2005, 20(2): 279-284 (in Chinese). [56] 董 伟, 卢金山. 三元晶核剂Li2O-A12O3-SiO2系微晶玻璃的晶化行为和性能研究[C]//2009中国功能材料科技与产业高层论坛论文集. 镇江, 2009: 166-169. DONG W, LU J S. Study on crystallization behavior and properties of ternary nucleating agent Li2O-Al2O3-SiO2 system glass-ceramics[C]//2009 Proceedings of China Functional Materials Technology and Industry High-level Forum. Zhenjiang, 2009: 166-169 (in Chinese). [57] WU J Q, LI Y, ZHAO Y B, et al. The effects of MgF2 in four complex nucleating agents on the performance and crystallization of lithium aluminum silicate glasses[J]. Journal of Non-Crystalline Solids, 2022, 583: 121469. [58] WU J Q, LIN C W, LIU J L, et al. The effect of complex nucleating agent on the crystallization, phase formation and performances in lithium aluminum silicate (LAS) glasses[J]. Journal of Non-Crystalline Solids, 2019, 521: 119486. [59] WU J Q, ZHU L G, NING T X, et al. The effects of a complex nucleating agent with different ratios of MgF2/LiF on the crystallization and performance of lithium aluminum silicate glasses[J]. Journal of Non-Crystalline Solids, 2020, 540: 120087. [60] 张雪峰, 侯健飞, 贾晓林, 等. 晶核剂对锂硅铝系矿渣微晶玻璃结构和性能的影响[J]. 中国陶瓷, 2014, 50(11): 39-43. ZHANG X F, HOU J F, JIA X L, et al. Effect of the structure and properties of nucleation agents on Li2O-Al2O3-SiO2 glass-ceramics from tailings[J]. China Ceramics, 2014, 50(11): 39-43 (in Chinese). [61] SOARES V O, PEITL O, ZANOTTO E D. New sintered Li2O-Al2O3-SiO2 ultra-low expansion glass-ceramic[J]. Journal of the American Ceramic Society, 2013, 96(4): 1143-1149. [62] DRESSLER M, RDINGER B, DEUBENER J. An in situ high-temperature X-ray diffraction study of early-stage crystallization in lithium alumosilicate glass-ceramics[J]. Journal of the American Ceramic Society, 2011, 94(5): 1421-1426. [63] 李亚娟, 吴松全, 王福平. La2O3对Li2O-Al2O3-SiO2系统微晶玻璃性能的影响[J]. 中国民航学院学报, 2006, 24(3): 44-47. LI Y J, WU S Q, WANG F P. Influence of La2O3 on properties of Li2O-Al2O3-SiO2 system glass-ceramics[J]. Journal of Civel Aviation University of China, 2006, 24(3): 44-47 (in Chinese). [64] ZHANG N Z, LI M, DONG X, et al. The effect of phase formation on biomechanical and biological performance of Li2O-Al2O3-SiO2 glass-ceramics[J]. Ceramics International, 2022, 48(7): 10187-10194. [65] HIMEI Y, NAGAKANE T, FUKUMI K, et al. Thermo-optic properties of B2O3 doped Li2O-Al2O3-SiO2 glass-ceramics[J]. Journal of Non-Crystalline Solids, 2008, 354(27): 3113-3119. [66] 曾 麟, 黄守佳, 林鸿剑, 等. 混合碱效应对Li2O-Al2O3-SiO2系玻璃结构和热膨胀性能的影响[J]. 硅酸盐通报, 2021, 40(11): 3813-3821. ZENG L, HUANG S J, LIN H J, et al. Influence of mixed alkali effect on structure and thermal expansion properties of Li2O-Al2O3-SiO2 glass[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3813-3821 (in Chinese). [67] LU P, ZHENG Y, CHENG J S, et al. Effect of La2O3 addition on crystallization and properties of Li2O-Al2O3-SiO2 glass-ceramics[J]. Ceramics International, 2013, 39(7): 8207-8212. |
[1] | 田静, 黄依平, 苗恩新, 李苑, 刘军波, 张本涛, 刘涌, 韩高荣. 基于机器学习的轻质低膨胀幕墙玻璃组分设计研究[J]. 硅酸盐通报, 2023, 42(7): 2603-2612. |
[2] | 郑伟宏, 张航, 高子鹏, 黄猛, 袁坚, 田培静, 彭志钢. 晶核剂对透明堇青石微晶玻璃析晶与性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1466-1474. |
[3] | 李现梓, 王衍行, 韩韬, 杨鹏慧, 石晓飞, 何坤, 祖成奎. 高强度玻璃组分的研究进展[J]. 硅酸盐通报, 2022, 41(4): 1113-1123. |
[4] | 赵春霞, 范仕刚, 刘杰, 何粲, 李跃. 超低膨胀微晶玻璃热处理工艺优化研究[J]. 硅酸盐通报, 2022, 41(11): 3870-3876. |
[5] | 张恒;王艺慈;罗果萍;张宝;张福顺. 晶核剂Cr2O3、Fe2O3对玻璃熔化性能的影响[J]. 硅酸盐通报, 2018, 37(1): 272-277. |
[6] | 王艺慈;霍晓更;罗果萍;王永斌;张芳. Cr2O3、Fe2O3对高炉渣粘熔特性的影响[J]. 硅酸盐通报, 2017, 36(2): 701-705. |
[7] | 朱燕玉;王艺慈;张恒;罗果萍;霍晓更. Cr2 O3、TiO2对高炉渣制备微晶玻璃晶化方式的影响[J]. 硅酸盐通报, 2017, 36(11): 3835-3840. |
[8] | 程金树;康俊峰;唐方宇;楼贤春;刘楷. TiO2对CaO-MgO-Al2O3-SiO2微晶玻璃析晶的影响[J]. 硅酸盐通报, 2014, 33(8): 2143-2147. |
[9] | 吴钟晴;成茵;周伟伟;吴腾宴;黄小光. 镁铝硅系堇青石基微晶玻璃的制备及性能研究[J]. 硅酸盐通报, 2014, 33(1): 191-196. |
[10] | 罗果萍;于文武;王艺慈;吴胜利;姜祺. P2O5对包钢高炉渣微晶玻璃析晶行为的影响[J]. 硅酸盐通报, 2013, 32(2): 283-288. |
[11] | 曾华瑞;阮玉忠;于岩;刘慧颍. 氟化钙晶核剂对废啤酒瓶微晶玻璃的影响[J]. 硅酸盐通报, 2008, 27(2): 345-348. |
[12] | 赵莹;陆雷;张乐军;王浩. 晶核剂对Li2O-Al2O3-SiO2系微晶玻璃晶化过程和性能的影响[J]. 硅酸盐通报, 2007, 26(5): 896-900. |
[13] | 祝琳华;杨劲;罗康碧. 添加剂对NZP族低热膨胀陶瓷热学性质的影响[J]. 硅酸盐通报, 2007, 26(2): 256-259. |
[14] | 姚强;陆雷;江勤. 钢渣微晶玻璃的试验研究[J]. 硅酸盐通报, 2005, 24(2): 117-119. |
[15] | 吴松全;李亚娟;王福平. Li2O-Al2O3-SiO2系微晶玻璃的制备方法和应用现状[J]. 硅酸盐通报, 2005, 24(1): 76-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||