硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (4): 1197-1210.
侯焕然1, 石晓飞1, 金扬利1, 王衍行1, 李媛媛2, 祖成奎1
收稿日期:
2023-12-18
修订日期:
2024-02-05
出版日期:
2024-04-15
发布日期:
2024-04-17
通信作者:
祖成奎,教授级高级工程师。E-mail:zuchengkui@cbma.com.cn
作者简介:
侯焕然(1999—),男,硕士研究生。主要从事电磁屏蔽玻璃的研究。E-mail:houhuanran8866@163.com
HOU Huanran1, SHI Xiaofei1, JIN Yangli1, WANG Yanhang1, LI Yuanyuan2, ZU Chengkui1
Received:
2023-12-18
Revised:
2024-02-05
Online:
2024-04-15
Published:
2024-04-17
摘要: 电磁屏蔽玻璃是国防、民生等领域的重要应用材料,但是电磁性能和光学性能往往难以兼顾提升。超薄金属基透明电磁屏蔽薄膜是电磁屏蔽玻璃领域常用的功能性材料。本文对超薄金属基电磁屏蔽玻璃的屏蔽设计原理进行了详细阐述,重点综述了降低超薄金属薄膜阈值厚度的方法,回顾了近年来不同结构的超薄金属基电磁屏蔽玻璃的光学及电磁屏蔽性能,并对电磁屏蔽玻璃的未来发展趋势进行了讨论。
中图分类号:
侯焕然, 石晓飞, 金扬利, 王衍行, 李媛媛, 祖成奎. 超薄金属基电磁屏蔽玻璃研究进展[J]. 硅酸盐通报, 2024, 43(4): 1197-1210.
HOU Huanran, SHI Xiaofei, JIN Yangli, WANG Yanhang, LI Yuanyuan, ZU Chengkui. Research Progress of Ultra-Thin Metal Based Electromagnetic Shielding Glass[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1197-1210.
[1] 石晓飞, 侯焕然, 金扬利, 等. 雷达波屏蔽隐身与光学透明兼容技术研究进展[J]. 硅酸盐通报, 2022, 41(11): 4003-4020. SHI X F, HOU H R, JIN Y L, et al. Research progress of compatibility technology of radar shielding stealth and optical transparency[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4003-4020 (in Chinese). [2] 黄智宇, 陈宏辉, 马文乐, 等. 太赫兹隐身及屏蔽材料研究进展[J]. 高等学校化学学报, 2019, 40(6): 1103-1115. HUANG Z Y, CHEN H H, MA W L, et al. Research progress on terahertz stealth and shielding materials[J]. Chemical Journal of Chinese Universities, 2019, 40(6): 1103-1115 (in Chinese). [3] 黎嘉威, 马泽南, 贺爱娜, 等. 金属电磁屏蔽材料的研究进展[J]. 宁波大学学报(理工版), 2022, 35(4): 93-108. LI J W, MA Z N, HE A N, et al. Recent progress of metal electromagnetic shielding materials[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2022, 35(4): 93-108 (in Chinese). [4] 隋子桐, 时方晓, 唐明猛, 等. 柔性透明导电氧化物薄膜的制备及应用进展[J]. 能源化工, 2022, 43(1): 38-42. SUI Z T, SHI F X, TANG M M, et al. Preparation and application progress of flexible transparent conductive oxide films[J]. Energy Chemical Industry, 2022, 43(1): 38-42 (in Chinese). [5] SHAHBAZ SALEEM M, BILAL HANIF M, GREGOR M, et al. Nanostructured multi-layer MgF2/ITO coatings prepared via e-beam evaporation for efficient electromagnetic interference shielding performance[J]. Applied Surface Science, 2022, 596: 153584. [6] 韩银龙, 孙文波, 王晓白, 等. 金属网格透明薄膜的电磁屏蔽性能研究[J]. 航空制造技术, 2022, 65(22): 101-107. HAN Y L, SUN W B, WANG X B, et al. Electromagnetic interference shielding performance of transparent metal-mesh film[J]. Aeronautical Manufacturing Technology, 2022, 65(22): 101-107 (in Chinese). [7] SONG S M, CHO S M. Voidless metal lines sintered with intense pulsed light and their applications as transparent metal-mesh electrodes[J]. Materials Chemistry and Physics, 2023, 303: 127821. [8] KIM M H, JOH H, HONG S H, et al. Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films[J]. Current Applied Physics, 2019, 19(1): 8-13. [9] 卢 健, 危 韦, 杨 光, 等. 银纳米线薄膜的制备及电磁屏蔽性能研究[J]. 化工新型材料, 2019, 47(9): 104-108+113. LU J, WEI W, YANG G, et al. Preparation of silver nanowire film and its application in electromagnetic shielding[J]. New Chemical Materials, 2019, 47(9): 104-108+113 (in Chinese). [10] SAHOO R, SUNDARA R, SUBRAMANIAN V. Influence of molecular weight of PVP on the structure of silver nanowires for EMI shielding application[J]. Materials Today: Proceedings, 2023, 94: 29-34. [11] WANG C B, GUO Y B, CHEN J W, et al. Transparent and flexible electromagnetic interference shielding film based on Ag nanowires/ionic liquids/thermoplastic polyurethane ternary composites[J]. Composites Communications, 2023, 37: 101444. [12] 鹿春航, 范文渊, 赵佳扬等. 聚合物基电磁屏蔽复合材料的研究进展[J]. 化工新型材料, 2023, 51(增刊2): 38-41+47. LU C H, FAN W Y, ZHAO J Y, et al. Research progress of polymer matrix composites for electromagnetic interference shielding[J]. New Chemical Materials, 2023, 51(supplement 2): 38-41+47 (in Chinese). [13] MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 403: 126438. [14] LI W C, ZHANG B H, YING Y, et al. An optically transparent unequal proportional coding metasurface with absorption and diffusion integrated mechanism for ultra-broadband RCS reduction[J]. Optical Materials, 2022, 133: 112801. [15] HAO J X, ZHANG B Z, JING H H, et al. A transparent ultra-broadband microwave absorber based on flexible multilayer structure[J]. Optical Materials, 2022, 128: 112173. [16] HUANG J H, LIU X H, LU Y H, et al. Seed-layer-free growth of ultra-thin Ag transparent conductive films imparts flexibility to polymer solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 184: 73-81. [17] WANG Z X, JIAO B, QING Y C, et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2826-2834. [18] GUILLÉN C, HERRERO J. TCO/metal/TCO structures for energy and flexible electronics[J]. Thin Solid Films, 2011, 520(1): 1-17. [19] 肖鹏远, 焦晓宁. 电磁屏蔽原理及其电磁屏蔽材料制造方法的研究[J]. 非织造布, 2010, 18(5): 15-19. XIAO P Y, JIAO X N. Electromagnetic shielding theory and methods of making electromagnetic shielding materials[J]. Nonwovens, 2010, 18(5): 15-19 (in Chinese). [20] LEE J H, JANG J W, SOHN S H, et al. Electromagnetic interference (EMI) shielding efficiency (SE) characteristics of the ITO/Ag multilayer structure[J]. Molecular Crystals and Liquid Crystals, 2007, 470(1): 107-120. [21] 林鸿宾, 陆万顺. 电磁屏蔽原理及电磁屏蔽玻璃[J]. 玻璃, 2008, 35(3): 39-42. LIN H B, LU W S. Principle of electromagnetic shield and electromagnetic shielding glass[J]. Glass, 2008, 35(3): 39-42 (in Chinese). [22] 梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2): 61-68+103. LIANG Y L, HUANG X J, YAO L X, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety & EMC, 2021(2): 61-68+103 (in Chinese). [23] LAM K K, NG S M, WONG H F, et al. Effect of thickness on the optical and electrical properties of ITO/Au/ITO sandwich structures[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13437-13446. [24] OZBAY S, ERDOGAN N, ERDEN F, et al. Surface free energy analysis of ITO/Au/ITO multilayer thin films on polycarbonate substrate by apparent contact angle measurements[J]. Applied Surface Science, 2020, 529: 147111. [25] ZHANG L, PERSAUD R, MADEY T E. Ultra-thin metal films on a metal oxide surface: growth of Au on TiO2 (110)[J]. Physical Review B, 1997, 6(16): 10549. [26] TOM T, ROS E, LÓPEZ-PINTÓ N, et al. Influence of co-sputtered Ag: Al ultra-thin layers in transparent V2O5/Ag: Al/AZO hole-selective electrodes for silicon solar cells[J]. Materials, 2020, 13(21): 4905. [27] PLYUSNIN N I. Formation of a nanophase wetting layer and metal growth on a semiconductor[J]. Technical Physics Letters, 2018, 44: 980. [28] CHOI H W, THEODORE N D, ALFORD T L. ZnO-Ag-MoO3 transparent composite electrode for ITO-free, PEDOT: pss-free bulk-heterojunction organic solar cells[J]. Solar Energy Materials and Solar Cells, 2013, 117: 446-450. [29] GHOSH D S, LIU Q, MANTILLA-PEREZ P, et al. Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells[J]. Advanced Functional Materials, 2015, 25(47): 7309-7316. [30] ZOU J Y, LI C Z, CHANG C Y, et al. Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells[J]. Advanced Materials, 2014, 26(22): 3618-3623. [31] 吴杨慧, 王俊杰, 赖森锋, 等. 用于航空电磁防护和智能隐身的光学透明柔性宽带吸波器的试验研究[J]. 航空科学技术, 2019, 30(5): 70-74. WU Y H, WANG J J, LAI S F, et al. Experimental study on optically transparent flexible broadband absorber for aviation electromagnetic protection and intelligent stealth[J]. Aeronautical Science & Technology, 2019, 30(5): 70-74 (in Chinese). [32] 黄 星, 任家飞, 李齐方, 等. 聚合物基柔性透明电磁屏蔽复合材料研究进展[J]. 复合材料学报, 2023, 40(6): 3153-3166. HUANG X, REN J F, LI Q F, et al. Research progress of polymer-based flexible transparent electromagnetic shielding composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3153-3166 (in Chinese). [33] ZHANG C, ZHAO D W, GU D E, et al. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics[J]. Advanced Materials, 2014, 26(32): 5696-5701. [34] WANG D P, QU Z M, WANG Y Y, et al. Effects of Al-doping concentration on the structure and electromagnetic shielding properties of transparent Ag thin films[J]. Optical Materials, 2023, 135: 113353. [35] WANG D P, QU Z M, WANG Y Y, et al. Role of Cu-doping concentration in the synthesis, microstructure and properties of Ag thin films via magnetron co-sputtering method[J]. Vacuum, 2023, 216: 112437. [36] 孟 真, 李广德, 崔光振, 等. 基于超材料的红外/雷达兼容隐身材料研究进展[J]. 材料导报, 2023, 37(21): 1-8. MENG Z, LI G D, CUI G Z, et al. Research progress of infrared/radar compatible stealth materials based on metamaterials[J]. Materials Reports, 2023, 37(21): 1-8 (in Chinese). [37] JI C G, LIU D, ZHANG C, et al. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100[J]. Nature Communications, 2020, 11(1): 3367. [38] ZHANG C, JI C G, PARK Y, et al. Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications (advanced optical materials 3/2021)[J]. Advanced Optical Materials, 2021, 9: 2170009. [39] SCHWAB T, SCHUBERT S, HOFMANN S, et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes[J]. Advanced Optical Materials, 2013, 1(10): 707-713. [40] MÄKELÄ M, HATANPÄÄ T, MIZOHATA K, et al. Studies on thermal atomic layer deposition of silver thin films[J]. Chemistry of Materials, 2017, 29(5): 2040-2045. [41] YEH M H, CHEN P H, YANG Y C, et al. Investigation of Ag-TiO2 interfacial reaction of highly stable Ag nanowire transparent conductive film with conformal TiO2 coating by atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10788-10797. [42] 刘 静, 刘 丹, 顾真安. 介质/金属/介质多层透明导电薄膜研究进展[J]. 材料导报, 2005, 19(8): 9-12. LIU J, LIU D, GU Z A. Research progress of D/M/D transparent conductive multilayer films[J]. Materials Review, 2005, 19(8): 9-12 (in Chinese). [43] 张 康, 褚向前, 刘丽华, 等. 介质/金属/介质透明导电薄膜研究进展[J]. 真空科学与技术学报, 2017, 37(11): 1067-1074. ZHANG K, CHU X Q, LIU L H, et al. Latest progress of dielectric/metal/dielectric transparent conductive thin films[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(11): 1067-1074 (in Chinese). [44] TAN D C, JIANG C M, LI Q K, et al. Development and current situation of flexible and transparent EM shielding materials[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(21): 25603-25630. [45] LIM H S, OH J M, KIM J W. Technical trends of flexible, transparent electromagnetic interference shielding film[J]. Journal of the Microelectronics and Packaging Society, 2021, 28(1): 21-29. [46] WANG H Y, JI C G, ZHANG C, et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11782-11791. [47] CHOI H J, PARK B J, EOM J H, et al. Simultaneous realization of electromagnetic interference shielding, hydrophobic qualities, and strong antibacterial activity for transparent electronic devices[J]. Current Applied Physics, 2016, 16(12): 1642-1648. [48] 廖敦微, 郑月军, 陈 强, 等. 随机金属网栅透明导电薄膜研究进展及应用[J]. 激光与光电子学进展, 2023, 60(19): 3788/LOP221450. LIAO D W, ZHENG Y J, CHEN Q, et al. Research progress and application of random metal grid transparent conductive films[J]. Laser & Optoelectronics Progress, 2023, 60(19): 3788/LOP221450 (in Chinese). [49] ERDOGAN N, ERDEN F, ASTARLIOGLU A T, et al. ITO/Au/ITO multilayer thin films on transparent polycarbonate with enhanced EMI shielding properties[J]. Current Applied Physics, 2020, 20(4): 489-497. [50] JENIFER K, PARTHIBAN S. Highly stable, ultra-thin Au embedded zinc tin oxide multilayer transparent conductive thin films[J]. Current Applied Physics, 2023, 53: 94-103. [51] WANG G H, HAO L L, ZHANG X D, et al. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2022, 607: 89-99. [52] 许君君, 黄金华, 盛 伟, 等. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881. XU J J, HUANG J H, SHENG W, et al. Research progress on ultrathin metal transparent conductive films and their applications[J]. Materials Reports, 2019, 33(11): 1875-1881 (in Chinese). [53] LI D, LI T, ZHANG J, et al. Highly stable and transparent conductive film realized by semi-embedded polydopamine/silver nanowire network[J]. Materials Today Communications, 2020, 25: 101551. [54] WANG H Y, ZHENG D N, ZHANG Y L, et al. High-performance transparent ultrabroadband electromagnetic radiation shielding from microwave toward terahertz[J]. ACS Applied Materials & Interfaces, 2023, 15(42): 49487-49499. [55] LEE J, HONG J, Patel M, et al. Transparent electromagnetic wave shielding film of ITO/Ag/ITO[J]. Korean Institute of Electrical Engineers, 2022, 71(3): 512-516. [56] WANG H Y, ZHANG Y L, JI C G, et al. Transparent perfect microwave absorber employing asymmetric resonance cavity[J]. Advanced Science, 2019, 6(19): 1901320. [57] 赵亚丽, 马富花, 江 波, 等. ITO/Ag光子晶体薄膜的制备及性能[J]. 光学精密工程, 2015, 23(6): 1516-1522. ZHAO Y L, MA F H, JIANG B, et al. Preparation and properties of ITO/Ag photonic crystal thin films[J]. Optics and Precision Engineering, 2015, 23(6): 1516-1522 (in Chinese). [58] ZHAO Y L, MA F H, LI X F, et al. A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures[J]. Chinese Physics B, 2018, 27(2): 027302. |
[1] | 郭晨, 杨利青, 万瑞, 关永帽, 陈超, 王鹏飞. 电磁屏蔽玻璃研究与发展现状[J]. 硅酸盐通报, 2022, 41(11): 4021-4035. |
[2] | 刘灿辉, 陶伟杰, 陶莹雪, 贺振华. 沉积温度和时间对多孔SiC薄膜的光致发光性能的影响[J]. 硅酸盐通报, 2021, 40(9): 3090-3097. |
[3] | 李渊;赵青南;张泽华;刘翔;曾瑧;董玉红. 磁控溅射功率对WOx薄膜结构和光催化活性的影响[J]. 硅酸盐通报, 2019, 38(2): 512-516. |
[4] | 彭塞奥;王天齐;金克武;杨扬;李刚;姚婷婷;杨勇;沈洪雪;鲍田;汤永康;金良茂;王东;苏文静;沈鸿烈;甘治平. 溅射功率对二氧化锆薄膜结构及力学性能的影响研究[J]. 硅酸盐通报, 2019, 38(10): 3133-313. |
[5] | 张泽华;赵青南;刘翔;李渊;曾臻;董玉红;赵杰. 膜厚对直流反应磁控溅射沉积NiO薄膜的结构与电致变色性能的影响[J]. 硅酸盐通报, 2018, 37(9): 2759-2765. |
[6] | 刘翔;赵青南;张泽华;李渊;曾瑧;董玉红;赵杰. 磁控溅射功率对玻璃基DLC薄膜的结构和硬度的影响[J]. 硅酸盐通报, 2018, 37(10): 3049-3053. |
[7] | 左联;杨进超;赵华宇;林锐;杜广报. 铁氧体、石墨及碳纤维水泥基复合材料的电磁屏蔽性能研究[J]. 硅酸盐通报, 2018, 37(10): 3103-3107. |
[8] | 梁斐;赵修建;倪佳苗;郑敏栋. 热处理对Sb:SnO2透明导电薄膜光电性能的影响[J]. 硅酸盐通报, 2017, 36(9): 2951-2957. |
[9] | 丛芳玲;赵青南;刘旭;罗乐平;顾宝宝;董玉红;赵杰. 溅射时间对GZO薄膜光电性能的影响[J]. 硅酸盐通报, 2016, 35(12): 3910-3914. |
[10] | 顾宝宝;赵青南;刘旭;罗乐平;丛芳玲;赵修建. 氮氩流量比对玻璃基TiN薄膜的结构和硬度的影响[J]. 硅酸盐通报, 2016, 35(12): 4076-4081. |
[11] | 陈元安;王莹. 高介电HfOxNy薄膜的微结构及界面特性的研究[J]. 硅酸盐通报, 2013, 32(5): 927-929. |
[12] | 王敏;吴波;刘海龙;黄超然;付金彪;赵春凤;吴育锋;熊远鹏;周泽友. 常压烧结法制备ZAO靶材及其性质研究[J]. 硅酸盐通报, 2013, 32(4): 708-713. |
[13] | 张玉芹;邓小玲;刘行冰;符春林;成计平. 工艺因素对磁控溅射法制备钛酸锶钡薄膜性能的影响[J]. 硅酸盐通报, 2013, 32(12): 2544-2549. |
[14] | 王乾;徐小玉. 磁控溅射法制备铁氧体薄膜的磁性能研究[J]. 硅酸盐通报, 2012, 31(4): 916-919. |
[15] | 刘文婷;刘正堂;闫锋;田浩;刘其军. 氧气对磁控溅射HfO2薄膜电学性能的影响[J]. 硅酸盐通报, 2010, 29(5): 997-1001. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||