硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (3): 878-890.
所属专题: 资源综合利用
周宗可, 覃宗华, 万泉, 聂信, 于文彬, 杨淑勤
收稿日期:
2023-09-28
修订日期:
2023-11-23
出版日期:
2024-03-15
发布日期:
2024-03-27
通信作者:
覃宗华,博士,副研究员。E-mail:qinzonghua@mail.gyig.ac.cn
作者简介:
周宗可(1996—),男,硕士研究生。主要从事矿物-水界面相互作用的研究。E-mail:zhouzongke@mail.gyig.ac.cn
基金资助:
ZHOU Zongke, QIN Zonghua, WAN Quan, NIE Xin, YU Wenbin, YANG Shuqin
Received:
2023-09-28
Revised:
2023-11-23
Online:
2024-03-15
Published:
2024-03-27
摘要: 三水铝石和勃姆石不仅是在土壤和水环境中分布广泛的铝氢氧化物矿物,也是重要的工业原料与产品。它们与环境中无机非金属离子、无机金属离子及有机物的吸附作用极大地影响着地表环境中物质的迁移富集和环境污染物的吸附去除,并且由于结构特性和表面性质,三水铝石和勃姆石在研究高效经济的吸附剂方面也具有较为重要的应用。本文在概述三水铝石和勃姆石结构和表面物理化学性质的基础上,对三水铝石和勃姆石表面多种非金属离子、金属离子和有机物的吸附行为进行综述,期望加深对铝氢氧化物矿物在地表环境物质循环中所起作用的理解,以及拓展其工业应用。
中图分类号:
周宗可, 覃宗华, 万泉, 聂信, 于文彬, 杨淑勤. 三水铝石和勃姆石吸附行为的研究进展[J]. 硅酸盐通报, 2024, 43(3): 878-890.
ZHOU Zongke, QIN Zonghua, WAN Quan, NIE Xin, YU Wenbin, YANG Shuqin. Research Progress on Adsorption Behavior of Gibbsite and Boehmite[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 878-890.
[1] GRASSIAN V H. Surface science of complex environmental interfaces: oxide and carbonate surfaces in dynamic equilibrium with water vapor[J]. Surface Science, 2008, 602(18): 2955-2962. [2] OGATA F, KAWASAKI N, NAKAMURA T, et al. Removal of arsenious ion by calcined aluminum oxyhydroxide (boehmite)[J]. Journal of Colloid and Interface Science, 2006, 300(1): 88-93. [3] VIRTANEN S, BOK F, IKEDA-OHNO A, et al. The specific sorption of Np(V) on the corundum (α-Al2O3) surface in the presence of trivalent lanthanides Eu(III) and Gd(III): a batch sorption and XAS study[J]. Journal of Colloid and Interface Science, 2016, 483: 334-342. [4] LUO L, CAI W Q, ZHOU J B, et al. Facile synthesis of boehmite/PVA composite membrane with enhanced adsorption performance towards Cr(VI)[J]. Journal of Hazardous Materials, 2016, 318: 452-459. [5] MESHCHERYAKOV E P, RESHETNIKOV S I, SANDU M P, et al. Efficient adsorbent-desiccant based on aluminium oxide[J]. Applied Sciences, 2021, 11(6): 2457. [6] LIU X W, WANG Y X, CUI X Y, et al. Fluoride removal from wastewater by natural and modified gibbsite[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 658-668. [7] WEI Y, YAO R, CHEN S, et al. The relative contributions of iron and aluminum oxides to ferrocyanide retention in soils: a comparative study[J]. International Journal of Environmental Science and Technology, 2023: 1-12. [8] GARCÍA-GÓMEZ C, VIDALES-CONTRERAS J A, MÁRQUEZ-REYES J M, et al. Physical-chemical characterization of metal hydroxides sludge waste obtained from electrocoagulation processes and its application as adsorbent for organic pollutants removal in aqueous solution[J]. Desalination and Water Treatment, 2019, 157: 29-38. [9] DENG L, HAN S B, ZHOU D, et al. Morphology dependent effect of γ-Al2O3 for ethanol dehydration: nanorods and nanosheets[J]. CrystEngComm, 2022, 24(4): 796-804. [10] PARK C M. Analysis of mercury adsorption at the gibbsite-water interface using the CD-MUSIC model[J]. Environmental Science and Pollution Research, 2018, 25(22): 21721-21730. [11] YU X, LI Y Y, ZHANG J G, et al. Distinct water behaviors at the surfaces of siloxane and gibbsite layers: response to the concentration and cation type[J]. Chemical Physics, 2023, 573: 112016. [12] BICKMORE B R, TADANIER C J, ROSSO K M, et al. Bond-valence methods for pKa prediction: critical reanalysis and a new approach 1[J]. Geochimica Et Cosmochimica Acta, 2004, 68(9): 2025-2042. [13] CATALANO J G, PARK C, FENTER P, et al. Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite[J]. Geochimica Et Cosmochimica Acta, 2008, 72(8): 1986-2004. [14] CATALANO J G. Weak interfacial water ordering on isostructural hematite and corundum (001) surfaces[J]. Geochimica Et Cosmochimica Acta, 2011, 75(8): 2062-2071. [15] ZENOBI M C, RUEDA E H. Adsorption of Me(II), HEDP, and Me(II)-HEDP onto boehmite at nonstoichiometric Me(II)-HEDP concentrations[J]. Environmental Science & Technology, 2006, 40(10): 3254-3259. [16] MORTERRA C, EMANUEL C, CERRATO G, et al. Infrared study of some surface properties of boehmite (γ-AlO2H)[J]. Journal of the Chemical Society-Faraday Transactions, 1992, 88(3): 339-348. [17] KUMAR E, BHATNAGAR A, HOGLAND W, et al. Interaction of anionic pollutants with Al-based adsorbents in aqueous media: a review[J]. Chemical Engineering Journal, 2014, 241: 443-456. [18] CAI W Q, YU J G, GU S H, et al. Facile hydrothermal synthesis of hierarchical boehmite: sulfate-mediated transformation from nanoflakes to hollow microspheres[J]. Crystal Growth & Design, 2010, 10(9): 3977-3982. [19] XU D, JIANG H Y, LI M. A novel method for synthesizing well-defined boehmite hollow microspheres[J]. Journal of Colloid and Interface Science, 2017, 504: 660-668. [20] TIAN J Y, TIAN P, PANG H C, et al. Fabrication synthesis of porous Al2O3 hollow microspheres and its superior adsorption performance for organic dye[J]. Microporous and Mesoporous Materials, 2016, 223: 27-34. [21] LIU X M, NIU C G, ZHEN X P, et al. Novel approach for synthesis of boehmite nanostructures and their conversion to aluminum oxide nanostructures for remove Congo red[J]. Journal of Colloid and Interface Science, 2015, 452: 116-125. [22] KAMARI M, SHAFIEE S, SALIMI F, et al. Comparison of modified boehmite nanoplatelets and nanowires for dye removal from aqueous solution[J]. Desalination and Water Treatment, 2019, 161: 304-314. [23] IIJIMA S, YUMURA T, LIU Z. One-dimensional nanowires of pseudoboehmite (aluminum oxyhydroxide γ-AlOOH)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11759-11764. [24] SUN Y M, WANG H, LI P, et al. Synthesis and identification of hierarchical γ-AlOOH self-assembled by nanosheets with adjustable exposed facets[J]. CrystEngComm, 2016, 18(24): 4546-4554. [25] TANG X Y, YU Y X. Electrospinning preparation and characterization of alumina nanofibers with high aspect ratio[J]. Ceramics International, 2015, 41(8): 9232-9238. [26] FENG K Z, RONG D Q, REN W A, et al. Hierarchical flower-like γ-AlOOH and γ-Al2O3 microspheres: synthesis and adsorption properties[J]. Materials Express, 2015, 5(4): 371-375. [27] LI Y H, PENG C, ZHAO W, et al. Morphology evolution in hydrothermal synthesis of mesoporous alumina[J]. Journal of Inorganic Materials, 2014, 29(10): 1115. [28] LI Z, LIU G H, LI X B, et al. Effects of cation on the morphology of boehmite precipitated from alkaline solutions by adding gibbsite as seed[J]. Crystal Growth & Design, 2019, 19(3): 1778-1785. [29] ZHANG Y X, JIA Y, JIN Z, et al. Self-assembled, monodispersed, flower-like γ-AlOOH hierarchical superstructures for efficient and fast removal of heavy metal ions from water[J]. CrystEngComm, 2012, 14(9): 3005-3007. [30] MATHIEU Y, LEBEAU B, VALTCHEV V. Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions[J]. Langmuir, 2007, 23(18): 9435-9442. [31] FAN B T, CHEN S J, YAO Q F, et al. Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation[J]. Materials, 2017, 10(3): 311. [32] ZHANG H L, LI P, CUI W W, et al. Synthesis of nanostructured γ-AlOOH and its accelerating behavior on the thermal decomposition of AP[J]. RSC Advances, 2016, 6(32): 27235-27241. [33] BRILEY E, HUESTIS P, ZHANG X, et al. Radiolysis of thermally dehydrated gibbsite[J]. Materials Chemistry and Physics, 2021, 271: 124885. [34] 陈 博, 陈小明, 陈迪云. 三水铝石至一水软铝石转化的机制:对铝土矿中一水软铝石成因的启示[J]. 南京大学学报(自然科学), 2022, 58(2): 228-234. CHEN B, CHEN X M, CHEN D Y. Transformation mechanism of gibbsite to boehmite: implication for the genesis of boehmite in bauxite[J]. Journal of Nanjing University (Natural Science), 2022, 58(2): 228-234 (in Chinese). [35] LI W, FENG X H, YAN Y P, et al. Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum (hydr)oxides[J]. Environmental Science & Technology, 2013: 47(15): 8308-8315. [36] GÜCKEL K, ROSSBERG A, MÜLLER K, et al. Spectroscopic identification of binary and ternary surface complexes of Np(V) on gibbsite[J]. Environmental Science & Technology, 2013, 47(24): 14418-14425. [37] HONG Z N, YAN J, JIANG J, et al. Isothermal titration calorimetry as a useful tool to examine adsorption mechanisms of phosphate on gibbsite at various solution conditions[J]. Soil Science Society of America Journal, 2020, 84(4): 1110-1124. [38] RUYTER-HOOLEY M, MORTON D W, JOHNSON B B, et al. The effect of humic acid on the sorption and desorption of myo-inositol hexaphosphate to gibbsite and kaolinite[J]. European Journal of Soil Science, 2016, 67(3): 285-293. [39] CHOUDHARY A, KHANDELWAL N, SINGH N, et al. Nanoplastics interaction with feldspar and weathering originated secondary minerals (kaolinite and gibbsite) in the riverine environment[J]. Science of the Total Environment, 2022, 818: 151831. [40] GUO L Y, HE X, HONG Z N, et al. Effect of the interaction of fulvic acid with Pb(II) on the distribution of Pb(II) between solid and liquid phases of four minerals[J]. Environmental Science and Pollution Research, 2022, 29(45): 68680-68691. [41] JIANG Y, WU Y E, LI H X. Immobilization of thermomyces lanuginosus xylanase on aluminum hydroxide particles through adsorption: characterization of immobilized enzyme[J]. Journal of Microbiology and Biotechnology, 2015, 25(12): 2016-2023. [42] KATZ L E, CRISCENTI L J, CHEN C C, et al. Temperature effects on alkaline earth metal ions adsorption on gibbsite: approaches from macroscopic sorption experiments and molecular dynamics simulations[J]. Journal of Colloid and Interface Science, 2013, 399: 68-76. [43] SZEWCZUK-KARPISZ K, KRASUCKA P, BOGUTA P, et al. Electrical double layer at the gibbsite/anionic polyacrylamide/supporting electrolyte interface: adsorption, spectroscopy and electrokinetic studies[J]. Journal of Molecular Liquids, 2018, 261: 439-445. [44] WU Y, ZHANG H H, LI J W, et al. Adsorption of soil invertase to goethite, gibbsite and their organic complexes and the effects on enzyme catalytic performance[J]. Colloids and Surfaces B: Biointerfaces, 2023, 222: 113073. [45] BAUMER T, HIXON A E. Kinetics of neptunium sorption and desorption in the presence of aluminum (hydr)oxide minerals: evidence for multi-step desorption at low pH[J]. Journal of Environmental Radioactivity, 2019, 205/206: 72-78. [46] AMADOU I, FAUCON M P, HOUBEN D. New insights into sorption and desorption of organic phosphorus on goethite, gibbsite, kaolinite and montmorillonite[J]. Applied Geochemistry, 2022, 143: 105378. [47] SCHNECKENBURGER T, RIEFSTAHL J, FISCHER K. Adsorption of aliphatic polyhydroxy carboxylic acids on gibbsite: pH dependency and importance of adsorbate structure[J]. Environmental Sciences Europe, 2018, 30: 1-15 [48] QI Y W, WEI L H, SHI D N, et al. Al-Li alloy chemical milling waste solution synthesis of γ-AlOOH bundles for Cr(VI) rapid adsorption[J]. ChemistrySelect, 2020, 5(19): 5732-5741. [49] ZHOU J P, CAI W Q, YANG Z C, et al. N, N-dimethylformamide assisted facile hydrothermal synthesis of boehmite microspheres for highly effective removal of Congo red from water[J]. Journal of Colloid and Interface Science, 2021, 583: 128-138. [50] YANG Z C, CAI W Q. Surfactant-free preparation of mesoporous solid/hollow boehmite and bayerite microspheres via double hydrolysis of NaAlO2 and formamide from room temperature to 180 ℃[J]. Journal of Colloid and Interface Science, 2020, 564: 182-192. [51] VO T K, PARK H K, NAM C W, et al. Facile synthesis and characterization of γ-AlOOH/PVA composite granules for Cr(VI) adsorption[J]. Journal of Industrial and Engineering Chemistry, 2018, 60: 485-492. [52] SADRI A, WHITE K F, POTTER I D, et al. Comparison of pyrophosphate and orthophosphate removal by boehmite and kaolinite[J]. Applied Clay Science, 2023, 233: 106818. [53] SID KALAL H, ETTEHADI GARGARI J, KHANCHI A R, et al. Isotherms, kinetics and thermodynamic studies of removal of thorium from aqueous solution by boehmite granules[J]. International Journal of Environmental Science and Technology, 2022, 19(4): 3275-3286. [54] YAN Y P, LIU F Jr, LI W, et al. Sorption and desorption characteristics of organic phosphates of different structures on aluminium (oxyhydr)oxides[J]. European Journal of Soil Science, 2014, 65(2): 308-317. [55] LI K Z, YUAN G Q, DONG L, et al. Boehmite aerogel with ultrahigh adsorption capacity for Congo red removal: preparation and adsorption mechanism[J]. Separation and Purification Technology, 2022, 302: 122065. [56] LI P, ZHENG S L, QING P H, et al. The vanadate adsorption on a mesoporous boehmite and its cleaner production application of chromate[J]. Green Chemistry, 2014, 16(9): 4214-4222. [57] LI Z J, HE L, TIAN W L, et al. Batch and fixed-bed adsorption behavior of porous boehmite with high percentage of exposed (020) facets and surface area towards Congo red[J]. Inorganic Chemistry Frontiers, 2021, 8(3): 735-745. [58] ISLAM M A, ANGOVE M J, MORTON D W. Macroscopic and modeling evidence for nickel(II) adsorption onto selected manganese oxides and boehmite[J]. Journal of Water Process Engineering, 2019, 32: 100964. [59] WANG J Y, ZHOU W Q, SHI Y L, et al. Uranium sorption on oxyhydroxide minerals by surface complexation and precipitation[J]. Chinese Chemical Letters, 2022, 33(7): 3461-3467. [60] QIAN J, SHEN M M, WANG P F, et al. Co-adsorption of perfluorooctane sulfonate and phosphate on boehmite: influence of temperature, phosphate initial concentration and pH[J]. Ecotoxicology and Environmental Safety, 2017, 137: 71-77. [61] WANG F, YUAN X E, WANG D W. Hydrothermal synthesis of hierarchical boehmite (γ-AlOOH) hollow microspheres with highly active surface[J]. AIP Advances, 2021, 11(6): 065209. [62] HUR H, REEDER R J. Tungstate sorption mechanisms on boehmite: systematic uptake studies and X-ray absorption spectroscopy analysis[J]. Journal of Colloid and Interface Science, 2016, 461: 249-260. [63] LI J C, LI M A, YANG X, et al. Morphology-controlled synthesis of boehmite with enhanced efficiency for the removal of aqueous Cr(VI) and nitrates[J]. Nanotechnology, 2019, 30(19): 195702. [64] ISLAM M A, ANGOVE M J, MORTON D W, et al. A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103515. [65] HAN B W, CAI W Q, YANG Z C. Easily regenerative carbon/boehmite composites with enhanced cyclic adsorption performance toward methylene blue in batch and continuous aqueous systems[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6635-6643. [66] FOUNDAS M, BRITCHER L G, FORNASIERO D, et al. Boehmite suspension behaviour upon adsorption of methacrylate-phosphonate copolymers[J]. Powder Technology, 2015, 269: 385-391. [67] NIE X, XING X H, XIE R Y, et al. Impact of iron/aluminum (hydr)oxide and clay minerals on heteroaggregation and transport of nanoplastics in aquatic environment[J]. Journal of Hazardous Materials, 2023, 446: 130649. [68] HUITTINEN N, RABUNG T, LÜTZENKIRCHEN J, et al. Sorption of Cm(III) and Gd(III) onto gibbsite, α-Al(OH)3: a batch and TRLFS study[J]. Journal of Colloid and Interface Science, 2009, 332(1): 158-164. [69] NKOH J N, LI K W, SHI Y X X, et al. The mechanism for enhancing phosphate immobilization on colloids of oxisol, ultisol, hematite, and gibbsite by chitosan[J]. Chemosphere, 2022, 309: 136749. [70] NKOH J N, HONG Z N, LU H L, et al. Adsorption of amino acids by montmorillonite and gibbsite: adsorption isotherms and spectroscopic analysis[J]. Applied Clay Science, 2022, 219: 106437. [71] ESSINGTON M E, STEWART M A. Adsorption of antimonate by gibbsite: reversibility and the competitive effects of phosphate and sulfate[J]. Soil Science Society of America Journal, 2016, 80(5): 1197-1207. [72] IWAI T, HASHIMOTO Y. Adsorption of tungstate (WO4) on birnessite, ferrihydrite, gibbsite, goethite and montmorillonite as affected by pH and competitive phosphate (PO4) and molybdate (MoO4) oxyanions[J]. Applied Clay Science, 2017, 143: 372-377. [73] GOLDBERG S. Macroscopic experimental and modeling evaluation of selenite and selenate adsorption mechanisms on gibbsite[J]. Soil Science Society of America Journal, 2014, 78(2): 473-479. [74] XU T Y, CATALANO J G. Impacts of surface site coordination on arsenate adsorption: macroscopic uptake and binding mechanisms on aluminum hydroxide surfaces[J]. Langmuir, 2016, 32(49): 13261-13269. [75] LADEIRA A C Q, CIMINELLI V S T. Adsorption and desorption of arsenic on an oxisol and its constituents[J]. Water Research, 2004, 38(8): 2087-2094. [76] HUANG X X, ZHU C, WANG Q, et al. Mechanisms for As(OH)3 and H3AsO4 adsorption at anhydrous and hydrated surfaces of gibbsite and possibility for anionic As(III) and As(V) formation[J]. Applied Surface Science, 2020, 525: 146494. [77] GIMSING A L, BORGGAARD O K. Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides[J]. Clay Minerals, 2002, 37(3): 509-515. [78] JAYARATHNA L, MAKEHELWALA M, BANDARA A, et al. Vibration spectroscopic evidence for different interactive modes of iodide on gibbsite in humic acid mediation[J]. Colloid and Polymer Science, 2018, 296(7): 1259-1265. [79] OGATA F, TOMINAGA H, YABUTANI H, et al. Granulation of gibbsite with inorganic binder and its ability to adsorb Mo(VI) from aqueous solution[J]. Toxicological & Environmental Chemistry, 2012, 94(4): 650-659. [80] TOKORO C, SAKAKIBARA T, SUZUKI S. Mechanism investigation and surface complexation modeling of zinc sorption on aluminum hydroxide in adsorption/coprecipitation processes[J]. Chemical Engineering Journal, 2015, 279: 86-92. [81] BAUMER T, KAY P, HIXON A E. Comparison of europium and neptunium adsorption to aluminum (hydr)oxide minerals[J]. Chemical Geology, 2017, 464: 84-90. [82] WATTS H D, O’DAY P A, KUBICKI J D. Gibbsite (100) and kaolinite (100) sorption of cadmium(II): a density functional theory and XANES study of structures and energies[J]. The Journal of Physical Chemistry A, 2019, 123(29): 6319-6333. [83] RUYTER-HOOLEY M, LARSSON A C, JOHNSON B B, et al. The effect of inositol hexaphosphate on cadmium sorption to gibbsite[J]. Journal of Colloid and Interface Science, 2016, 474: 159-170. [84] SATPATHY A, HIXON A. Eu(III) and Am(III) adsorption on aluminum (hydr)oxide minerals: surface complexation modeling[J]. Geochemical Transactions, 2023, 24(1): 259206119. [85] ISHIDA K, SAITO T, AOYAGI N, et al. Surface speciation of Eu3+ adsorbed on kaolinite by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC)[J]. Journal of Colloid and Interface Science, 2012, 374(1): 258-266. [86] STUMPF T, BAUER A, COPPIN F, et al. Inner-sphere, outer-sphere and ternary surface complexes: a TRLFS study of the sorption process of Eu(III) onto smectite and kaolinite[J]. Radiochimica Acta, 2002, 90(6): 345-349. [87] HO T A, GREATHOUSE J A, LEE A S, et al. Enhanced ion adsorption on mineral nanoparticles[J]. Langmuir, 2018, 34(20): 5926-5934. [88] GU J, XU K, HUANG X F, et al. Adsorption of hydrated uranyl on gibbsite (001) surface[J]. Environmental Chemistry, 2021, 40(10): 3207-3216. [89] SADRI S, JOHNSON B B, RUYTER-HOOLEY M, et al. The adsorption of nortriptyline on montmorillonite, kaolinite and gibbsite[J]. Applied Clay Science, 2018, 165: 64-70. [90] RUYTER-HOOLEY M, LARSSON A C, JOHNSON B B, et al. Surface complexation modeling of inositol hexaphosphate sorption onto gibbsite[J]. Journal of Colloid and Interface Science, 2015, 440: 282-291. [91] HONG Z N, LI J Y, JIANG J, et al. Competition between bacteria and phosphate for adsorption sites on gibbsite: an in situ ATR-FTIR spectroscopic and macroscopic study[J]. Colloids and Surfaces B: Biointerfaces, 2016, 148: 496-502. [92] PRIETZEL J, HARRINGTON G, HÄUSLER W, et al. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy[J]. Journal of Synchrotron Radiation, 2016, 23(2): 532-544. [93] VAN TRUONG T, KIM D J. Synthesis of high quality boehmite and γ-alumina for phosphorus removal from water works sludge by extraction and hydrothermal treatment[J]. Environmental Research, 2022, 212: 113448. [94] JIMÉNEZ-BECERRIL J, SOLACHE-RÍOS M, GARCÍA-SOSA I. Fluoride removal from aqueous solutions by boehmite[J]. Water, Air, & Soil Pollution, 2012, 223(3): 1073-1078. [95] HUANG L, YANG Z H, HE Y J, et al. Adsorption mechanism for removing different species of fluoride by designing of core-shell boehmite[J]. Journal of Hazardous Materials, 2020, 394: 122555. [96] GLORIAS-GARCIA F, ARRIAGA-MERCED J M, ROA-MORALES G, et al. Fast reduction of Cr(VI) from aqueous solutions using alumina[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2477-2483. [97] CUI W W, ZHANG X, PEARCE C I, et al. Effect of Cr(III) adsorption on the dissolution of boehmite nanoparticles in caustic solution[J]. Environmental Science & Technology, 2020, 54(10): 6375-6384. [98] ZHANG H L, LI P, WANG Z M, et al. In situ synthesis of γ-AlOOH and synchronous adsorption separation of V(V) from highly concentrated Cr(VI) multiplex complex solutions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6674-6681. [99] STRATHMANN T J, MYNENI S C B. Effect of soil fulvic acid on nickel(II) sorption and bonding at the aqueous-boehmite (γ-AlOOH) interface[J]. Environmental Science & Technology, 2005, 39(11): 4027-4034. [100] SHEN Z Z, ILTON E S, PRANGE M P, et al. Molecular dynamics simulations of the interfacial region between boehmite and gibbsite basal surfaces and high ionic strength aqueous solutions[J]. The Journal of Physical Chemistry C, 2017, 121(25): 13692-13700. [101] SHIH K, WANG F. Adsorption behavior of perfluorochemicals (PFCs) on boehmite: influence of solution chemistry[J]. Procedia Environmental Sciences, 2013, 18: 106-113. [102] WANG F, LIU C S, SHIH K. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite[J]. Chemosphere, 2012, 89(8): 1009-1014. [103] WANG F, SHIH K, LECKIE J O. Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite[J]. Chemosphere, 2015, 118: 213-218. [104] EL ASHMAWY A A, TADA M, YOSHIMURA C. Weak dehydration enhances the adsorption capacity of boehmite for anionic dyes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131954. |
[1] | 朱崟源, 朱干宇, 齐放, 李会泉, 陈艳, 李少鹏, 郭彦霞. 固废基水化硅酸钙制备及综合利用研究进展[J]. 硅酸盐通报, 2024, 43(2): 517-533. |
[2] | 周良芹, 王蓉, 范金龙, 王佳妮, 许腾飞, 谭文渊, 付大友. NiMgAl-HTLC的制备及其对水体富营养化的抑制性能研究[J]. 硅酸盐通报, 2024, 43(2): 734-745. |
[3] | 易钰奇, 李静, 韦柳媚, 田浩, 庄恩德, 黎雪杰. 不同镁铝比LDHs对钢筋阻锈性能的影响[J]. 硅酸盐通报, 2024, 43(1): 121-127. |
[4] | 肖莎, 彭同江, 孙红娟, 张伟. 不同层电荷数钙蒙脱石对黄曲霉毒素B1的吸附性能与机理研究[J]. 硅酸盐通报, 2024, 43(1): 172-182. |
[5] | 张建纲, 杨勇, 毛永琳, 周栋梁, 李申振, 王涛. 硅灰对聚羧酸减水剂的吸附作用[J]. 硅酸盐通报, 2024, 43(1): 183-190. |
[6] | 谢修鑫, 廖立兵, 雷馨宇, 王丽娟, 唐晓尉. EDTA-LDH/zeolite制备及其对重金属离子的吸附[J]. 硅酸盐通报, 2024, 43(1): 370-382. |
[7] | 金星, 傅金祥, 张黎, 何祥. 锰氧化膜包覆沸石的制备及其处理含锰水特性研究[J]. 硅酸盐通报, 2023, 42(9): 3295-3305. |
[8] | 熊军红, 欧阳东. 黏土矿物对聚羧酸减水剂在净浆、砂浆和混凝土中分散性的影响[J]. 硅酸盐通报, 2023, 42(7): 2344-2353. |
[9] | 景国建, 徐凯丽, 徐兴伟, 牛腾, 韩乐冰. 聚合氯化铝对聚羧酸减水剂黏土吸附性的影响[J]. 硅酸盐通报, 2023, 42(7): 2354-2360. |
[10] | 秦思成, 吴锦绣, 齐源昊, 柳召刚, 胡艳宏, 冯福山, 李健飞, 张晓伟. 添加剂对无水硫酸钙晶须生长的影响及分子动力学模拟[J]. 硅酸盐通报, 2023, 42(7): 2551-2562. |
[11] | 许蒙, 郭玉呈, 林国强, 李建保, 陈拥军, 骆丽杰. 硼氮共掺杂生物质炭的制备及吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2242-2250. |
[12] | 徐啟斌, 牛香力, 陈婷婷, 陈雨欣, 李杨, 张华, 倪红卫. 煤气化渣合成4A分子筛及其吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2251-2261. |
[13] | 周宗可, 覃宗华, 万泉, 聂信, 于文彬. 勃姆石对稀土离子的吸附性研究[J]. 硅酸盐通报, 2023, 42(5): 1688-1695. |
[14] | 刘佳宁, 洪梅, 魏涛, 陈日, 宋博宇. CTAB改性地质聚合物对地下污染源的阻截作用[J]. 硅酸盐通报, 2023, 42(5): 1831-1840. |
[15] | 王宁, 陈宇昕, 徐文盛, 安胜利, 彭军, 彭继华. 氨氮废水处理用新型沸石化陶粒的制备[J]. 硅酸盐通报, 2023, 42(5): 1864-1874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||