[1] HUANG Y H, NIU F, CHEN J B, et al. Express highway embankment distress and occurring probability in permafrost regions on the Qinghai-Tibet Plateau[J]. Transportation Geotechnics, 2023, 42: 101069. [2] 徐岳震, 申明德, 周志伟, 等. 青藏铁路高温多年冻土区典型路基的长期热稳定性研究[J]. 冰川冻土, 2022, 44(6): 1784-1795. XU Y Z, SHEN M D, ZHOU Z W, et al. Study on long-term thermal stability of typical subgrade in high temperature permafrost region of Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1784-1795 (in Chinese). [3] 宋 强, 张 鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410. SONG Q, ZHANG P, BAO J W, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410 (in Chinese). [4] 吕翔宇. 多年冻土区机场道基用泡沫混凝土性能研究[D]. 兰州: 兰州理工大学, 2021. LYU X Y. Study on properties of foam concrete for airport pavement foundation in permafrost regions[D]. Lanzhou: Lanzhou University of Technology, 2021 (in Chinese). [5] ZHUO Z, ALI A, ZHU C, et al. Evaluating the potential of using foamed concrete as the insulation layer for pavements in cold regions[J]. Construction and Building Materials, 2022, 341: 127903. [6] RAJ A, SATHYAN D, MINI K. Physical and functional characteristics of foam concrete: a review[J]. Construction and Building Materials, 2019, 221: 787-799. [7] 张飞凡, 裴万胜, 张熙胤, 等. 超疏水涂层的制备及其在寒区混凝土中的应用研究综述[J]. 材料导报, 2023, 37(增刊2): 23030163. ZHANG F F, PEI W S, ZHANG X Y, et al. A review on the preparation and application of superhydrophobic coatings to concrete in cold regions[J]. Materials Reports, 2023, 37(supplement 2): 23030163 (in Chinese). [8] 崔琳晶, 陈德鹏, 吕 忠, 等. 超疏水混凝土的制备及应用于防腐防冰领域的研究进展[J]. 功能材料, 2023, 54(6): 6066-6079. CUI L J, CHEN D P, LYU Z, et al. Research progress in fabrication of superhydrophobic concrete and its application on anti-corrosion and anti-icing field[J]. Journal of Functional Materials, 2023, 54(6): 6066-6079 (in Chinese). [9] ZHANG B, LI Q B, NIU X J, et al. Influence of a novel hydrophobic agent on freeze-thaw resistance and microstructure of concrete[J]. Construction and Building Materials, 2021, 269: 121294. [10] TRAN N P, NGUYEN T N, NGO T D, et al. Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: a state-of-the-art review[J]. Journal of Cleaner Production, 2022, 375: 133939. [11] WANG R, GAO P W, TIAN M H, et al. Experimental study on mechanical and waterproof performance of lightweight foamed concrete mixed with crumb rubber[J]. Construction and Building Materials, 2019, 209: 655-664. [12] GENG Y J, LI S C, HOU D S, et al. Fabrication of superhydrophobicity on foamed concrete surface by GO/silane coating[J]. Materials Letters, 2020, 265: 127423. [13] GAO J, GENG Y J, LI S C, et al. Effect of silane emulsion on waterproofing and anti-icing performance of foamed concrete[J]. Construction and Building Materials, 2021, 301: 124082. [14] SHI D D, GENG Y J, LI S C, et al. Efficacy and mechanism of graphene oxide modified silane emulsions on waterproof performance of foamed concrete[J]. Case Studies in Construction Materials, 2022, 16: e00908. [15] 梁晓前, 黄榜彪, 黄秉章, 等. 基于孔结构的蒸压加气混凝土的冻融循环耐久性试验研究[J]. 材料导报, 2021, 35(增刊2): 200-204. LIANG X Q, HUANG B B, HUANG B Z, et al. Experimental study on freeze-thaw cycle durability of autoclaved aerated concrete based on pore structure[J]. Materials Reports, 2021, 35(supplement 2): 200-204 (in Chinese). [16] YAPHARY Y L, YU Z C, LAM R H W, et al. Effect of triethanolamine on cement hydration toward initial setting time[J]. Construction and Building Materials, 2017, 141: 94-103. [17] ZHANG Y R, KONG X M, LU Z C, et al. Influence of triethanolamine on the hydration product of portlandite in cement paste and the mechanism[J]. Cement and Concrete Research, 2016, 87: 64-76. [18] 张文华, 杨冯皓, 吕毓静, 等. 泡沫混凝土的稳泡措施和机理研究进展[J]. 硅酸盐学报, 2021, 49(10): 2266-2275. ZHANG W H, YANG F H, LV Y J, et al. Research progress on foam stabilization measures and mechanism of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2266-2275 (in Chinese). [19] LIU C, LUO J L, LI Q Y, et al. Water-resistance properties of high-belite sulphoaluminate cement-based ultra-light foamed concrete treated with different water repellents[J]. Construction and Building Materials, 2019, 228: 116798. [20] LANZÓN M, MARTÍNEZ E, MESTRE M, et al. Use of zinc stearate to produce highly-hydrophobic adobe materials with extended durability to water and acid-rain[J]. Construction and Building Materials, 2017, 139: 114-122. [21] JIANG Z D, WANG Q B, BRYE K R, et al. Quantifying organic carbon stocks using a stereological profile imaging method to account for rock fragments in stony soils[J]. Geoderma, 2021, 385: 114837. [22] 王泽辉, 王振军, 王笑风, 等. 配方组成对聚氨酯注浆材料抗压强度影响的研究[J]. 中国塑料, 2023, 37(2): 7-14. WANG Z H, WANG Z J, WANG X F, et al. Effect of formula compositions on compressive strength of polyurethane grouting materials[J]. China Plastics, 2023, 37(2): 7-14 (in Chinese). [23] HU J, XIE J L, JIANG X Y, et al. Improving oxidation resistance of ZrB2-based ceramics by LaF3 doping via oxidation-induced self-healing mechanism[J]. Ceramics International, 2021, 47(7): 9504-9512. [24] MA G G, LI G L, MU X D, et al. Effect of raindrop splashes on topsoil structure and infiltration characteristics[J]. CATENA, 2022, 212: 106040. [25] 亢 洁, 刘 港, 郭国法. 基于ImagePy的水敏纸图像预处理及液滴参数测量[J]. 科学技术与工程, 2021, 21(13): 5405-5414. KANG J, LIU G, GUO G F. Image preprocessing and droplet parameter measurement of water-sensitive paper based on ImagePy[J]. Science Technology and Engineering, 2021, 21(13): 5405-5414 (in Chinese). [26] DANG J T, ZHAO S B, CHEN G L, et al. Effect of polyethylene powder and heating treatment on the microstructure and hardened properties of foam concrete[J]. Journal of Building Engineering, 2022, 50: 104143. [27] LIU L P, YANG J J, SHE Y F, et al. Resourceful utilization of cow hair in the preparation of iron tailing-based foam concrete[J]. Materials, 2022, 15(16): 5739. [28] BAI Y, LU Y, ZHANG D L. Preparation of nano-carbon black and silica fume modified foam concrete: compressive strength, pore structure and electromagnetic property[J]. Construction and Building Materials, 2023, 369: 130553. [29] 袁志颖, 陈 波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127. YUAN Z Y, CHEN B, CHEN J L, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127 (in Chinese). [30] MALAKOPOULOS A, CHATZIGEORGIOU M, BOUKOS N, et al. Durability performance of Portland limestone cement mortar containing butyl and zinc stearate admixtures[J]. Materials and Structures, 2021, 54(2): 60. [31] LEI D, LI Y, LIN M A, et al. Model of advancing and receding contact angles on rough surfaces[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18376-18386. [32] ZHAO J H, GAO X, CHEN S Y, et al. Hydrophobic or superhydrophobic modification of cement-based materials: a systematic review[J]. Composites Part B: Engineering, 2022, 243: 110104. [33] 马文昊. 气泡混合轻质土的吸水特性研究[D]. 南京: 东南大学, 2020. MA W H. Study on water absorption characteristics of foamed cement[D]. Nanjing: Southeast University, 2020 (in Chinese). [34] 高 潇. 微孔混凝土六面包覆有机芯材复合体热工与防火性能研究[D]. 兰州: 西北民族大学, 2023. GAO X. Study on thermal and fire-resistant properties of microporous concrete six-covered core composite[D]. Lanzhou: Northwest University for Nationalities, 2023 (in Chinese). [35] 赵 苏, 郭兴华, 田 静, 等. 三乙醇胺在水泥-水界面的吸附现象及其促凝作用[J]. 混凝土, 2010(4): 66-70. ZHAO S, GUO X H, TIAN J, et al. Adsorption phenomenon of triethanolmine on the cement-water interface and accelerating effect[J]. Concrete, 2010(4): 66-70 (in Chinese). [36] 刘 萍, 唐爱东, 王健雁, 等. 硬脂酸钙稳泡机制及其对发泡水泥保温板泡孔结构的影响[J]. 中南大学学报(自然科学版), 2018, 49(5): 1054-1061. LIU P, TANG A D, WANG J Y, et al. Foam stabilizing mechanism of calcium stearate and its effects on pore structure of foam cement thermal insulation board[J]. Journal of Central South University (Science and Technology), 2018, 49(5): 1054-1061 (in Chinese). [37] CUI Y, WANG D M, ZHAO J H, et al. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material[J]. Journal of Building Engineering, 2018, 20: 21-29. [38] CHEN R X, LIU J P, MU S. Chloride ion penetration resistance and microstructural modification of concrete with the addition of calcium stearate[J]. Construction and Building Materials, 2022, 321: 126188. [39] 王永维, 何 燕, 何 舜. 三乙醇胺对锂渣复合水泥力学强度及水化性能的影响[J]. 新型建筑材料, 2020, 47(8): 97-102. WANG Y W, HE Y, HE S. Influence of triethanolamine on mechanical strength and hydration properties of lithium slag composite binder[J]. New Building Materials, 2020, 47(8): 97-102 (in Chinese). [40] 刘 晓, 谢 辉, 罗奇峰, 等. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 125-130. LIU X, XIE H, LUO Q F, et al. Study on regulation mechanism of triethanolamine to liquid alkali-free accelerator on ‘accelerating-inhibiting’ of early hydration of cement[J]. Materials Reports, 2023, 37(9): 125-130 (in Chinese). [41] LU Z C, KONG X M, JANSEN D, et al. Towards a further understanding of cement hydration in the presence of triethanolamine[J]. Cement and Concrete Research, 2020, 132: 106041. [42] 丁 曼. 防水性泡沫混凝土研究[D]. 长沙: 湖南大学, 2011. DING M. Study on waterproof foam concrete[D]. Changsha: Hunan University, 2011 (in Chinese). [43] ZHAO H T, DING J A, HUANG Y Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials[J]. Structural Concrete, 2019, 20(5): 1750-1762. |