欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (2): 719-726.

所属专题: 耐火材料

• 耐火材料 • 上一篇    下一篇

MgCl2·6H2O溶液对方镁石-镁铝尖晶石耐火材料性能的影响

王鑫1, 韩兵强1, 苗正2, 陈俊峰1, 鄢文1   

  1. 1.武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081;
    2.河北国亮新材料股份有限公司,唐山 063022
  • 收稿日期:2023-08-22 修订日期:2023-09-27 出版日期:2024-02-15 发布日期:2024-02-05
  • 通信作者: 韩兵强,博士,教授。E-mail:hbqref@wust.edu.cn
  • 作者简介:王鑫(1999—),男,硕士研究生。主要从事镁质耐火材料的研究。E-mail:wx1227659223@163.com
  • 基金资助:
    国家自然科学基金(U21A2058);唐山市高温材料创新联合体能力提升(22150239J)

Effect of MgCl2·6H2O Solution on Properties of Periclase-Magnesia Alumina Spinel Refractories

WANG Xin1, HAN Bingqiang1, MIAO Zheng2, CHEN Junfeng1, YAN Wen1   

  1. 1. The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;
    2. Hebei Guoliang New Materials Co., Ltd., Tangshan 063022, China
  • Received:2023-08-22 Revised:2023-09-27 Online:2024-02-15 Published:2024-02-05

摘要: 以电熔镁砂和电熔镁铝尖晶石为原料,以18 °Be'、24 °Be'、30 °Be'三种不同浓度的MgCl2·6H2O溶液和酚醛树脂为结合剂,制备方镁石-镁铝尖晶石耐火材料。以酚醛树脂为对照组,通过研究MgCl2·6H2O溶液对材料常温抗折强度、常温耐压强度、烧结性能、抗热震性能的影响,探明MgCl2·6H2O溶液对材料的作用机理。结果表明,在常温下MgCl2·6H2O溶液能与镁砂反应生成氯氧镁水泥(MOC),MOC在微观下表现为交错互锁的晶须结构,使得耐火材料在干燥后具有非常高的机械强度。当热处理温度为1 700 ℃、溶液浓度为24 °Be'时,材料的常温耐压强度达到79.1 MPa,相较于酚醛树脂提高了58.2%;当热处理温度为1 700 ℃、溶液浓度为18 °Be'时,材料的显气孔率达到16.8%,相较于酚醛树脂降低了13.4%。MgCl2·6H2O溶液浓度的增加有利于提高材料的断裂韧性。MOC和Mg(OH)2在烧成过程中会分解产生活性MgO,促进材料的烧结。此外,分解产生的活性MgO呈类球状,它们分散填充在镁砂颗粒内部裂隙处,形成微孔结构,有利于减缓热震时的热应力冲击。

关键词: MgCl2·6H2O溶液, 方镁石-镁铝尖晶石, 氯氧镁水泥, 类球状MgO, 烧结致密化, 抗热震性能

Abstract: Fused magnesia and fused magnesia alumina spinel were used as raw materials to prepare periclase-magnesia alumina spinel refractories, with three different concentrations of MgCl2·6H2O solution at 18 °Be′, 24 °Be′ and 30 °Be′ and phenolic resin as bonding agent. The effect of MgCl2·6H2O solution on cold modulus of rupture, cold crushing strength, sintering properties and thermal shock resistance of refractories was investigated by using phenolic resin as control group. The mechanisms of MgCl2·6H2O solution action on refractories were elucidated. The results show that MgCl2·6H2O solution reacts with magnesia to generate magnesium oxychloride cement (MOC) at room temperature, and the microstructure of MOC is interwoven interlocked whiskers, which makes the refractories show supervise mechanical strength after drying. The cold crushing strength of refractories reaches 79.1 MPa when the fire temperature is 1 700 ℃ and the solution concentration is 24 °Be′,which is 58.2% higher than that of phenolic resin. The apparent porosity of refractories reduces to 16.8% when the firing temperature is 1 700 ℃ and the solution concentration is 18 °Be′, which is 13.4% lower than that of phenolic resin. The increase of MgCl2·6H2O solution concentration is beneficial to improve fracture toughness of material. MOC and Mg(OH)2 decompose to produce reactive MgO during firing process, which promotes the sintering of refractories. In addition, the quasi-spherical MgO produced by decomposition disperses and fills in the internal cracks of magnesia particles, forming a microporous structure inside refractories, which is conducive to mitigating thermal stress impact during thermal shock.

Key words: MgCl2·6H2O solution, periclase-magnesia alumina spinel, magnesium oxychloride cement, quasi-spherical MgO, sintering densification, thermal shock resistance

中图分类号: