[1] 尹韶宁, 张智强, 余林文. 铁尾矿砂砂浆力学性能和收缩性能研究[J]. 硅酸盐通报, 2019, 38(6): 1707-1712+1718. YIN S N, ZHANG Z Q, YU L W. Research on mechanical property and drying shrinkage property of mortar mixed with iron tailing sand[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(6): 1707-1712+1718 (in Chinese). [2] SHETTIMA A U, HUSSIN M W, AHMAD Y, et al. Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J]. Construction and Building Materials, 2016, 120: 72-79. [3] ZHANG W F, GU X W, QIU J P, et al. Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete[J]. Construction and Building Materials, 2020, 260: 119917. [4] ZHAO J S, NI K, SU Y P, et al. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties[J]. Construction and Building Materials, 2021, 286: 122968. [5] 陶亚平, 赖天文. 铁尾矿砂再生混凝土的力学及耐久性能研究[J]. 功能材料, 2023, 54(3): 3143-3148. TAO Y P, LAI T W. Study on mechanics and durability of iron tailings recycled concrete[J]. Journal of Functional Materials, 2023, 54(3): 3143-3148 (in Chinese). [6] 李致远, 陈 峰. 铁尾矿砂绿色混凝土的制备与性能研究[J]. 功能材料, 2023, 54(6): 6230-6236. LI Z Y, CHEN F. Study on preparation and properties of green concrete with iron tailings[J]. Journal of Functional Materials, 2023, 54(6): 6230-6236 (in Chinese). [7] 程和平, 陆 璐. 铁尾矿砂掺量对混凝土力学性能、耐久性及水化特性的影响研究[J]. 金属矿山, 2021(11): 215-220. CHENG H P, LU L. Research on mechanical, impermeability and hydration characteristics of iron tailings concrete[J]. Metal Mine, 2021(11): 215-220 (in Chinese). [8] LYU Z Q, JIANG A N, LIANG B. Development of eco-efficiency concrete containing diatomite and iron ore tailings: mechanical properties and strength prediction using deep learning[J]. Construction and Building Materials, 2022, 327: 126930. [9] 马卫华, 孟庆娟, 康洪震, 等. 铁尾矿砂混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2021, 42(S1): 322-329. MA W H, MENG Q J, KANG H Z, et al. Experimental study on shear performance of iron tailings concrete beams[J]. Journal of Building Structures, 2021, 42(S1): 322-329 (in Chinese). [10] XU F, WANG S L, LI T, et al. The mechanical properties and resistance against the coupled deterioration of sulfate attack and freeze-thaw cycles of tailing recycled aggregate concrete[J]. Construction and Building Materials, 2021, 269: 121273. [11] 李 涛, 党 斌, 李传博, 等. 性能增强铁尾矿砂混凝土抗压性能试验研究[J]. 建筑技术, 2017, 48(1): 58-61. LI T, DANG B, LI C B, et al. Experimental study on compressive strength with performance enhancement of iron tailing concrete[J]. Architecture Technology, 2017, 48(1): 58-61 (in Chinese). [12] 韩守杰, 王玉雅, 余 沛, 等. 复掺纳米TiO2和稻壳灰的铁尾矿砂水泥砂浆性能研究[J]. 新型建筑材料, 2020, 47(6): 22-25+29. HAN S J, WANG Y Y, YU P, et al. An experimental study on properties of iron ore sand cement mortar mixed with nano-TiO2 and rice husk ash[J]. New Building Materials, 2020, 47(6): 22-25+29 (in Chinese). [13] 贺艳军, 张金山, 石占山, 等. 羟丙基甲基纤维素改善铁尾矿砂砂浆的性能[J]. 非金属矿, 2020, 43(6): 30-32. HE Y J, ZHANG J S, SHI Z S, et al. Improving effect of HPMC on properties of cement-tailings sand mortar[J]. Non-Metallic Mines, 2020, 43(6): 30-32 (in Chinese). [14] 吕绍伟, 姜 屏, 钱 彪, 等. 铁尾矿砂力学特性及再生利用研究进展[J]. 硅酸盐通报, 2020, 39(2): 466-470+512. LYU S W, JIANG P, QIAN B, et al. Research progress on mechanical properties and recycling of iron tailings sand[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 466-470+512 (in Chinese). [15] XU F, WANG S L, LI T, et al. Mechanical properties and pore structure of recycled aggregate concrete made with iron ore tailings and polypropylene fibers[J]. Journal of Building Engineering, 2021, 33: 101572. [16] ZHAO J S, WANG Q X, XU G Q, et al. Influence of macro-synthetic fiber on the mechanical properties of iron ore tailing concrete[J]. Construction and Building Materials, 2023, 367: 130293. [17] CHEN J H, YUAN Y X, ZHU Q, et al. High-temperature resistance of high-strength concrete with iron tailing sand[J]. Journal of Building Engineering, 2023, 63: 105544. [18] 史 波, 何 旺. 铁尾矿砂超高性能混凝土的冻融循环耐久性分析[J]. 金属矿山, 2022(12): 65-69. SHI B, HE W. Freeze-thaw cycle durability analysis of iron tailing sand ultra-high performance concrete[J]. Metal Mine, 2022(12): 65-69 (in Chinese). [19] 魏 涛, 全晓旖, 闫强强, 等. 高延性铁尾矿砂再生混凝土力学性能试验研究[J]. 混凝土与水泥制品, 2019(8): 93-96. WEI T, QUAN X Y, YAN Q Q, et al. Experimental study on mechanical performance of ductile iron tailings RAC[J]. China Concrete and Cement Products, 2019(8): 93-96 (in Chinese). [20] 祝和意, 张少峰. PVA纤维体积率对PVA-ECC力学性能的影响[J]. 材料导报, 2018, 32(18): 3266-3270+3275. ZHU H Y, ZHANG S F. Effect of PVA fiber volume fraction on the mechanical properties of PVA-ECC[J]. Materials Review, 2018, 32(18): 3266-3270+3275 (in Chinese). [21] 徐阳晨, 邢国华, 黄 娇, 等. 聚乙烯醇纤维和碳纳米管改性对混凝土力学性能的影响[J]. 建筑材料学报, 2023, 26(7): 809-815+822. XU Y C, XING G H, HUANG J, et al. Effect of PVA fiber and carbon nanotubes modification on mechanical properties of concrete[J]. Journal of Building Materials, 2023, 26(7): 809-815+822 (in Chinese). [22] FENG Y, WANG W J, WANG S Q. PVA fiber/cement-based interface in silane coupler KH560 reinforced high performance concrete-Experimental and molecular dynamics study[J]. Construction and Building Materials, 2023, 395: 132184. [23] 王兴国, 姜茂林, 陈 旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(3): 1205-1214. WANG X G, JIANG M L, CHEN X, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1205-1214 (in Chinese). [24] LIU F Y, XU K, DING W, et al. Microstructural characteristics and their impact on mechanical properties of steel-PVA fiber reinforced concrete[J]. Cement \& Concrete Composites, 2021, 123: 104196. [25] LIU F Y, DING W Q, QIAO Y F. Experimental investigation on the flexural behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder[J]. Construction and Building Materials, 2019, 228: 116706. [26] WANG Z Y, LIANG X W, ZHAI T W. Predicting the flexural behavior of steel-PVA hybrid fiber reinforced cementitious composite[J]. Structures, 2023, 51: 1189-1204. [27] 李 艳, 张文彬, 刘泽军. PVA-ECC动态压缩性能研究[J]. 建筑材料学报, 2020, 23(3): 513-520. LI Y, ZHANG W B, LIU Z J. Study on dynamic compressive properties of PVA-ECC[J]. Journal of Building Materials, 2020, 23(3): 513-520 (in Chinese). [28] 李 黎, 李宗利, 高丹盈, 等. 高温对钢纤维-聚乙烯醇纤维-CaCO3晶须多尺度纤维/水泥复合材料弯曲性能和微观结构的影响[J]. 复合材料学报, 2021, 38(7): 2326-2335. LI L, LI Z L, GAO D Y, et al. Influence of high temperature on flexural properties and micro structure of steel fiberpolyvinyl alcohol fiber-CaCO3 whisker multi-scale fibers/cement composite[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2326-2335 (in Chinese). [29] 曹明莉, 李 黎, 李志文, 等. CaCO3晶须对钢-聚乙烯醇混杂纤维增强水泥基复合材料板弯曲性能的影响[J]. 复合材料学报, 2017, 34(11): 2614-2623. CAO M L, LI L, LI Z W, et al. Influence of CaCO3 whisker on flexural behavior of steel-polyvinyl alcohol hybrid fiber reinforced cement matrix composite slabs[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2614-2623 (in Chinese). [30] WANG L, ZHOU S H, SHI Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete[J]. Composites Part B: Engineering, 2017, 130: 28-37. [31] 银英姿, 仇 贝. 聚乙烯醇纤维混凝土力学性能及早期开裂试验研究[J]. 硅酸盐通报, 2019, 38(2): 454-458. YIN Y Z, QIU B. Experimental study on mechanical properties and early cracking of polyvinyl alcohol fiber concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 454-458 (in Chinese). [32] 牛海成, 张耀宗, 吉珈琨, 等. 玻璃-聚乙烯醇纤维再生混凝土基本力学性能试验研究[J]. 混凝土, 2022(7): 91-94+98. NIU H C, ZHANG Y Z, JI J K, et al. Experimental research on basic mechanical properties of glass-polyvinyl alcohol fiber recycled concrete[J]. Concrete, 2022(7): 91-94+98 (in Chinese). [33] 李 波, 廖碧海. PVA纤维增强铁尾矿砂混凝土的3D打印力学性能研究[J]. 金属矿山, 2022(12): 59-64. LI B, LIAO B H. Study on the mechanical properties of 3D printing of PVA fiber reinforced iron tailings sand concrete[J]. Metal Mine, 2022(12): 59-64 (in Chinese). [34] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specifications for mix design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [35] 中华人民共和国住房和城乡建设部. 纤维混凝土应用技术规程: JGJ/T 221—2010[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical specification for application of fiber reinforced concrete: JGJ/T 221—2010[S]. Beijing: China Architecture & Building Press, 2010 (in Chinese). [36] 于 婧, 翟天文, 梁兴文, 等. 钢-PVA纤维混凝土流动性及力学性能研究[J]. 建筑材料学报, 2018, 21(3): 402-407. YU J, ZHAI T W, LIANG X W, et al. Fluidity and mechanical properties of steel-PVA fiber reinforced concrete[J]. Journal of Building Materials, 2018, 21(3): 402-407 (in Chinese). [37] 封孝信, 于启洋, 刘 刚, 等. 铁尾矿砂石对混凝土抗水渗透性的影响[J]. 硅酸盐通报, 2018, 37(10): 3288-3295. FENG X X, YU Q Y, LIU G, et al. Effect of sand and gravel made from iron ore tailings on the water permeability of concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3288-3295 (in Chinese). [38] 赵建军, 闫长旺, 刘曙光, 等. PVA纤维混凝土力学性能试验研究与分析[J]. 武汉理工大学学报, 2017, 39(8): 65-69. ZHAO J J, YAN C W, LIU S G, et al. Research and analysis of mechanical properties for PVA fiber reinforced concrete[J]. Journal of Wuhan University of Technology, 2017, 39(8): 65-69 (in Chinese). |