[1] ZENG G S, LING B, LI Z J, et al. Fluorine removal and calcium fluoride recovery from rare-earth smelting wastewater using fluidized bed crystallization process[J]. Journal of Hazardous Materials, 2019, 373: 313-320. [2] YUAN J, CHADWICK D, ZHANG D F, et al. Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting[J]. Waste Management, 2016, 56: 403-410. [3] CLAVIER K A, WATTS B, LIU Y L, et al. Risk and performance assessment of cement made using municipal solid waste incinerator bottom ash as a cement kiln feed[J]. Resources, Conservation and Recycling, 2019, 146: 270-279. [4] BOUGHANMI S, LABIDI I, MEGRICHE A, et al. Natural fluorapatite as a raw material for Portland clinker[J]. Cement and Concrete Research, 2018, 105: 72-80. [5] MALNAR M, RADOJIČIĆ V, KULIĆ G, et al. Energy and emission properties of burley tobacco stalk briquettes and its combinations with other biomass as promising replacement for coal[J]. Arhiv Za Higijenu Rada i Toksikologiju-Archives of Industrial Hygiene and Toxicology, 2023, 74(1): 61-68. [6] 王俊杰, 赵娇娇, 孟旭超, 等. 光伏光电行业含氟废水及污泥利用处置研究现状及展望[J]. 环境工程技术学报, 2018, 8(3): 333-342. WANG J J, ZHAO J J, MENG X C, et al. Research status and prospect of fluorinated wastewater and sludge utilization in photovoltaic industry[J]. Journal of Environmental Engineering Technology, 2018, 8(3): 333-342 (in Chinese). [7] YAN D H, PENG Z, KARSTENSEN K H, et al. Destruction of DDT wastes in two preheater/precalciner cement kilns in China[J]. The Science of the Total Environment, 2014, 476/477: 250-257. [8] HE T S, DA Y Q, SHI C, et al. Recovery of thermally treated fluorine-containing sludge as the substitutions of Portland cement[J]. Journal of Cleaner Production, 2020, 260: 121030. [9] 朱建宏, 陶 涛, 胡鹏刚, 等. 氟化钙污泥在熟料生产中的应用[J]. 水泥, 2020(10): 9-10+18. ZHU J H, TAO T, HU P G, et al. Application of calcium fluoride sludge in clinker production[J]. Cement, 2020(10): 9-10+18 (in Chinese). [10] 何廷树, 王敏豪, 达永琪, 等. 含氟污泥的理化性质及其对水泥性能和环境安全性的影响[J]. 硅酸盐学报, 2020, 48(8): 1295-1301. HE T S, WANG M H, DA Y Q, et al. Physicochemical performance of fluorine-containing sludge and its effect on cement properties and environmental safety[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1295-1301 (in Chinese). [11] 王敏豪. 水泥窑协同处置含氟污泥对水泥性能及环境安全性的影响[D]. 西安: 西安建筑科技大学, 2020. WANG M H. Effect of co-processing of fluorine-containing sludge in cement kiln on cement performance and environmental safety[D]. Xi'an: Xi'an University of Architecture and Technology, 2020 (in Chinese). [12] 李秋英, 芦令超, 王守德. CaF2对阿利特-硫铝酸锶钙水泥性能的影响[J]. 硅酸盐通报, 2011, 30(1): 101-104. LI Q Y, LU L C, WANG S D. Effect of CaF2 on the performance of alite-strontium calcium sulfoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(1): 101-104 (in Chinese). [13] RAINA K, JANAKIRAMAN L K. Use of mineralizer in black meal process for improved clinkerization and conservation of energy 22 Communicated by F.Massazza[J]. Cement and Concrete Research, 1998, 28(8): 1093-1099. [14] KLEMM W A, JAWED I, HOLUB K J. Effects of calcium fluoride mineralization on silicates and melt formation in Portland cement clinker[J]. Cement and Concrete Research, 1979, 9(4): 489-496. [15] DA Y Q, HE T S, SHI C, et al. Revealing the co-doping effects of fluorine and copper on the formation and hydration of cement clinker[J]. Construction and Building Materials, 2022, 335: 127516. [16] 马先伟, 王培铭. P2O5对于高C3S水泥熟料烧成和水化性能的影响[J]. 材料科学与工程学报, 2010, 28(1): 26-30. MA X W, WANG P M. Effects of P2O5 on the calcination process and hydration of clinker with high content of C3S[J]. Journal of Materials Science and Engineering, 2010, 28(1): 26-30 (in Chinese). [17] KOLOVOS K, LOUTSI P, TSIVILIS S, et al. The effect of foreign ions on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system[J]. Cement and Concrete Research, 2001, 31(3): 425-429. [18] DA Y Q, HE T S, SHI C. Unveiling the cooperation effects of fluorine and copper on tricalcium silicate (C3S) during cement kiln co-processing hazardous wastes containing Cu[J]. Construction and Building Materials, 2022, 337: 127612. [19] BIGARÉ M, GUINIER A, MAZIÈRES C, et al. Polymorphism of tricalcium silicate and its solid solutions[J]. Journal of the American Ceramic Society, 1967, 50(11): 609-619. [20] EMANUELSON A, LANDA C A R, HANSEN S. A comparative study of ordinary and mineralised Portland cement clinker from two different production units part II: characteristics of the calcium silicates[J]. Cement and Concrete Research, 2003, 33(10): 1623-1630. [21] MA S H, SHEN X D, GONG X P, et al. Influence of CuO on the formation and coexistence of 3CaO·SiO2 and 3CaO·3Al2O3·CaSO4 minerals[J]. Cement and Concrete Research, 2006, 36(9): 1784-1787. [22] WEEKS C, HAND R J, SHARP J H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate[J]. Cement and Concrete Composites, 2008, 30(10): 970-978. [23] MOISESCU C, JANA C, RÜSSEL C. Crystallization of rod-shaped fluoroapatite from glass melts in the system SiO2-Al2O3-CaO-P2O5-Na2O-K2O-F[J]. Journal of Non-Crystalline Solids, 1999, 248(2/3): 169-175. [24] DA Y Q, HE T S, SHI C, et al. Studies on the formation and hydration of tricalcium silicate doped with CaF2 and TiO2[J]. Construction and Building Materials, 2021, 266: 121128. [25] KACIMI L, SIMON-MASSERON A, GHOMARI A, et al. Influence of NaF, KF and CaF2 addition ontheclinker burning temperature anditsproperties[J]. Comptes Rendus Chimie, 2005, 9(1): 154-163. [26] STEPHAN D, MALLMANN R, KNÖFEL D, et al. High intakes of Cr, Ni, and Zn in clinker[J]. Cement and Concrete Research, 1999, 29(12): 1949-1957. [27] 张亮亮. 氟硫矿化剂对高C3S水泥熟料形成的影响[D]. 北京: 北京工业大学, 2005. ZHANG L L. The effect of fluoride and sulphate mineralisers on high C3S cement clinker formation[D]. Beijing: Beijing University of Technology, 2005 (in Chinese). [28] 管宗甫, 陈益民, 郭随华, 等. 杂质缺陷诱导阿利特晶胞常数的改变及多晶转变[J]. 硅酸盐学报, 2006, 34(1): 70-75. GUAN Z F, CHEN Y M, GUO S H, et al. Crystal lattice constant change and polymorph of alite caused by impurity defects[J]. Journal of the Chinese Ceramic Society, 2006, 34(1): 70-75 (in Chinese). [29] OPOCZKY L, GAVEL V. Effect of certain trace elements on the grindability of cement clinkers in the connection with the use of wastes[J]. International Journal of Mineral Processing, 2004, 74: S129-S136. [30] TREZZA M A, SCIAN A N. Burning wastes as an industrial resource: their effect on portland cement clinker[J]. Cement and Concrete Research, 2000, 30: 137-144. [31] REN X H, ZHANG W S, YE J Y. FTIR study on the polymorphic structure of tricalcium silicate[J]. Cement and Concrete Research, 2017, 99: 129-136. [32] ODLER I, ABDUL-MAULA S. Polymorphism and hydration of tricalcium silicate doped with ZnO[J]. Journal of the American Ceramic Society, 1983, 66(1): 1-4. [33] MA X W, CHEN H X, WANG P M. Effect of CuO on the formation of clinker minerals and the hydration properties[J]. Cement and Concrete Research, 2010, 40(12): 1681-1687. [34] LUDWIG H M, ZHANG W S. Research review of cement clinker chemistry[J]. Cement and Concrete Research, 2015, 78: 24-37. [35] EMANUELSON A, HANSEN S, VIGGH E. A comparative study of ordinary and mineralised Portland cement clinker from two different production units[J]. Cement and Concrete Research, 2003, 33(10): 1613-1621. [36] OMOTOSO O E, IVEY D G, MIKULA R. Quantitative X-ray diffraction analysis of chromium(III) doped tricalcium silicate pastes[J]. Cement and Concrete Research, 1996, 26(9): 1369-1379. [37] STEPHAN D, DIKOUNDOU S N, RAUDASCHL S G. Hydration characteristics and hydration products of tricalcium silicate doped with a combination of MgO, Al2O3 and Fe2O3[J]. Thermochimica Acta, 2008, 472(1/2): 64-73. [38] 张文生, 任雪红, 欧阳世翕. 离子固溶对硅酸三钙结构及性能影响的研究进展[J]. 硅酸盐学报, 2011, 39(10): 1666-1672. ZHANG W S, REN X H, OUYANG S X. Development on ion substitution effect on the crystal structure and properties of tricalcium silicate[J]. Journal of the Chinese Ceramic Society, 2011, 39(10): 1666-1672 (in Chinese). [39] ZHANG Z D, SCHERER G W, BAUER A. Morphology of cementitious material during early hydration[J]. Cement and Concrete Research, 2018, 107: 85-100. [40] 肖忠明, 郭俊萍, 崔 琪. C3S型硫铝酸盐水泥的水化及其水化产物[J]. 水泥, 2021(11): 6-9. XIAO Z M, GUO J P CUI Q. Hydration and hydration products of C3S type sulphoaluminate cement[J]. Cement, 2021(11): 6-9 (in Chinese). [41] LI X R, SCRIVENER K L. Impact of ZnO on C3S hydration and C-S-H morphology at early ages[J]. Cement and Concrete Research, 2022, 154: 106734. [42] YAN Y, GENG G Q. Does nano basic building-block of C-S-H exist?A review of direct morphological observations[J]. Materials & Design, 2024, 238: 112699. [43] PANDEL B, MONDAL P. Understanding retardation of cement hydration caused by zinc[J]. ACI Materials Journal, 2022, 119(1): 221-232. [44] ROSSETTI V A, MEDICI F. Inertization of toxic metals in cement matrices: effects on hydration, setting and hardening[J]. Cement and Concrete Research, 1995, 25(6): 1147-1152. |