[1] 赵廷凯. “纳米材料” 专题序言[J]. 材料工程, 2020, 48(4): 2. ZHAO T K. Preface to the topic of “nano-materials”[J]. Journal of Materials Engineering, 2020, 48(4): 2 (in Chinese). [2] 曹宇臣, 郭鸣明. 石墨烯材料及其应用[J]. 石油化工, 2016, 45(10): 1149-1159. CAO Y C, GUO M M. Graphene materials and its applications[J]. Petrochemical Technology, 2016, 45(10): 1149-1159 (in Chinese). [3] GAO Y W, HAO P. Mechanical properties of monolayer graphene under tensile and compressive loading[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41(8): 1561-1566. [4] AVOURIS P. Graphene: electronic and photonic properties and devices[J]. Nano Letters, 2010, 10(11): 4285-4294. [5] FAN Y F, ZHANG G S, LI Y. Study on graphene oxide reinforced magnesium phosphate cement composites[J]. Construction and Building Materials, 2022, 359: 129523. [6] LIU Q Z, ZHUANG Y, SHI B Y. Three-dimensional reduced graphene reinforced cement with enhanced safety and durability for drinking water distribution applications: long-term experimental and theoretical study[J]. Water Research, 2023, 230: 119572. [7] FAN Y C, NI Z, MU S C, et al. Hybrid micromechanical modelling and experiments on electrical conductivity of graphene reinforced porous and saturated cement composites[J]. Cement and Concrete Composites, 2023, 141: 105148. [8] BAHRAQ A A, AL-OSTA M A, OBOT I B, et al. Improving the adhesion properties of cement/epoxy interface using graphene-based nanomaterials: insights from molecular dynamics simulation[J]. Cement and Concrete Composites, 2022, 134: 104801. [9] WANG P, QIAO G, GUO Y P, et al. Molecular dynamics simulation of the interfacial bonding properties between graphene oxide and calcium silicate hydrate[J]. Construction and Building Materials, 2020, 260: 119927. [10] WANG P, QIAO G, HOU D S, et al. Functionalization enhancement interfacial bonding strength between graphene sheets and calcium silicate hydrate: insights from molecular dynamics simulation[J]. Construction and Building Materials, 2020, 261: 120500. [11] MIN B Z, WANG P Y, LI S Z, et al. Mechanical influence of graphene oxide in the interface between calcium silicate hydrate and quartz: a molecular dynamics study[J]. Construction and Building Materials, 2022, 325: 126597. [12] FAN Q C, WANG Z P, MENG X, et al. Multi-scale analysis of the strengthening mechanism of functionalized graphene as reinforcement in cement composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651: 129729. [13] HOU D S, LU Z Y, LI X Y, et al. Reactive molecular dynamics and experimental study of graphene-cement composites: structure, dynamics and reinforcement mechanisms[J]. Carbon, 2017, 115: 188-208. [14] KAI M F, ZHANG L W, LIEW K M. Graphene and graphene oxide in calcium silicate hydrates: chemical reactions, mechanical behavior and interfacial sliding[J]. Carbon, 2019, 146: 181-193. [15] KAI M F, ZHANG L W, LIEW K M. Carbon nanotube-geopolymer nanocomposites: a molecular dynamics study of the influence of interfacial chemical bonding upon the structural and mechanical properties[J]. Carbon, 2020, 161: 772-783. [16] GAO Y, JING H, WU J, et al. Molecular dynamics study on the influence of graphene oxide on the tensile behavior of calcium silicate hydrate composites[J]. Materials Chemistry and Physics, 2022, 292: 126881. [17] GONG P, REN Q, PENG S, et al. Influence of graphene oxide on the self-healing of cement paste fractures in CCUS cementing: a combined analysis of experiments and molecular dynamics simulations[J]. Construction and Building Materials, 2023, 404: 133067. [18] YANG H. Mechanical properties and mechanisms of alkali-activated slag paste reinforced by graphene oxide-SiO2 composite[J]. Journal of Cleaner Production, 2022, 378: 134502. [19] 周 扬. 基于分子动力学的水化硅酸钙的微结构与性能研究[D]. 南京: 东南大学, 2018. ZHOU Y. Study on the microstructure and properties of calcium silicate hydrates based on molecular dynamics simulation[D]. Nanjing: Southeast University, 2018 (in Chinese). [20] WANG X F, LI T R, WEI P, et al. Computational study of the nanoscale mechanical properties of C-S-H composites under different temperatures[J]. Computational Materials Science, 2018, 146: 42-53. [21] YANG Y, CAO J. Interfacial heat transfer behavior of graphene-based filler and calcium-silicate-hydrate in cement composites[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121165. [22] YANG Y, CAO J. New insight on the interfacial behavior between graphene-based membranes and protonated silicon-dioxide via molecular dynamics simulations[J]. Applied Surface Science, 2022, 590: 152727. [23] BÜYÜKÖZTÜRK O, BUEHLER M J, LAU D, et al. Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface[J]. International Journal of Solids and Structures, 2011, 48(14/15): 2131-2140. [24] PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16102-16107. [25] HOU D S, YANG Q R, JIN Z Q, et al. Enhancing interfacial bonding between epoxy and CSH using graphene oxide: an atomistic investigation[J]. Applied Surface Science, 2021, 568: 150896. [26] LERF A, HE H Y, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 1998, 102(23): 4477-4482. [27] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. [28] YANG Y, WANG Y X, CAO J. Prediction and evaluation of thermal conductivity in nanomaterial-reinforced cementitious composites[J]. Cement and Concrete Research, 2023, 172: 107240. [29] WATKINS E K, JORGENSEN W L. Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations[J]. The Journal of Physical Chemistry A, 2001, 105(16): 4118-4125. [30] 李宗利, 刘士达, 童涛涛, 等. 凝胶孔对水化硅酸钙(C-S-H)力学性能影响的分子动力学模拟[J]. 材料科学与工程学报, 2023, 41(5): 703-709+774. LI Z L, LIU S D, TONG T T, et al. Effect of gel pore on the mechanical properties of calcium silicate hydrate by molecular dynamics simulation[J]. Journal of Materials Science and Engineering, 2023, 41(5): 703-709+774 (in Chinese). [31] MISHRA R K, MOHAMED A K, GEISSBÜHLER D, et al. A force field database for cementitious materials including validations, applications and opportunities[J]. Cement and Concrete Research, 2017, 102: 68-89. [32] LIANG T, LAI Y M, HOU D S, et al. Freezing mechanism of NaCl solution ultra-confined on surface of calcium-silicate-hydrate: a molecular dynamics study[J]. Cement and Concrete Research, 2022, 154: 106722. [33] HOU D S, ZHENG H P, WANG P, et al. Molecular insight in the wetting behavior of nanoscale water droplet on CSH surface: effects of Ca/Si ratio[J]. Applied Surface Science, 2022, 587: 152811. [34] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS: a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. [35] PARK S, KHALILI-ARAGHI F, TAJKHORSHID E, et al. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality[J]. The Journal of Chemical Physics, 2003, 119(6): 3559-3566. [36] HAN S, HOSSAIN M S, HA T, et al. Graphene-oxide-reinforced cement composites mechanical and microstructural characteristics at elevated temperatures[J]. Nanotechnology Reviews, 2022, 11(1): 3174-3194. [37] YANG S, JIA W, WANG Y G, et al. Hydroxylated graphene: a promising reinforcing nanofiller for nanoengineered cement composites[J]. ACS Omega, 2021, 6(45): 30465-30477. [38] AN J, NAM B H, ALHARBI Y, et al. Edge-oxidized graphene oxide (EOGO) in cement composites: cement hydration and microstructure[J]. Composites Part B: Engineering, 2019, 173: 106795. [39] CHO B H, NAM B H, KHAWAJI M. Flexural fatigue behaviors and damage evolution analysis of edge-oxidized graphene oxide (EOGO) reinforced concrete composites[J]. Cement and Concrete Composites, 2021, 122: 104082. |