[1] ZHU Q Z, LI J P, SIMON P, et al. Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives[J]. Energy Storage Materials, 2021, 35: 630-660. [2] LIU R, ZHOU A, ZHANG X R, et al. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors[J]. Chemical Engineering Journal, 2021, 412: 128611. [3] WANG G, YU M H, FENG X L. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews, 2021, 50(4): 2388-2443. [4] NOORI A, EL-KADY M F, RAHMANIFAR M S, et al. Towards establishing standard performance metrics for batteries, supercapacitors and beyond[J]. Chemical Society Reviews, 2019, 48(5): 1272-1341. [5] SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 2020, 19(11): 1151-1163. [6] WANG Y G, SONG Y F, XIA Y Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. [7] RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52: 441-473. [8] ZHANG D, TAN C, ZHANG W Z, et al. Expanded graphite-based materials for supercapacitors: a review[J]. Molecules, 2022, 27(3): 716. [9] ZHAI Z Z, ZHANG L H, DU T M, et al. A review of carbon materials for supercapacitors[J]. Materials & Design, 2022, 221: 111017. [10] CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489. [11] WANG K X, BIRJUKOVS P, ERTS D, et al. Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres[J]. Journal of Materials Chemistry, 2009, 19(9): 1331. [12] WANG K X, WANG Y G, WANG Y R, et al. Mesoporous carbon nanofibers for supercapacitor application[J]. The Journal of Physical Chemistry C, 2009, 113(3): 1093-1097. [13] XIA Y D, MOKAYA R. Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials[J]. Chemistry of Materials, 2005, 17(6): 1553-1560. [14] ZHANG B, YU Z X, WU Y H, et al. Synthesis and structural morphology of ordered nanoporous carbon via SBA-15 hard template[J]. Advanced Materials Research, 2011, 233/234/235: 2239-2242. [15] HUANG X X, TAO Z M, PRASKAVICH J C J, et al. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro[J]. Langmuir, 2014, 30(36): 10886-10898. [16] POLSHETTIWAR V, CHA D, ZHANG X X, et al. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology[J]. Angewandte Chemie, 2010, 122(50): 9846-9850. [17] HULICOVA-JURCAKOVA D, KODAMA M, SHIRAISHI S, et al. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance[J]. Advanced Functional Materials, 2009, 19(11): 1800-1809. [18] WANG H, SHAO Y, MEI S L, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews, 2020, 120(17): 9363-9419. [19] YANG Q H, PENG H T, ZHANG Q J, et al. Atomically dispersed high-density Al-N4 sites in porous carbon for efficient photodriven CO2 cycloaddition[J]. Advanced Materials, 2021, 33(45): 2103186. [20] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. [21] YU H J, SHANG L, BIAN T, et al. Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction[J]. Advanced Materials, 2016, 28(25): 5080-5086. [22] LI X H, KURASCH S, KAISER U, et al. Synthesis of monolayer-patched graphene from glucose[J]. Angewandte Chemie International Edition, 2012, 51(38): 9689-9692. [23] CHEN Y F, HUANG W X, HE D L, et al. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14405-14414. [24] XIE X Q, SU D W, ZHANG J Q, et al. A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries[J]. Nanoscale, 2015, 7(7): 3164-3172. [25] MENG X, CUI H J, DONG J H, et al. Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons[J]. Journal of Materials Chemistry A, 2013, 1(33): 9469-9476. [26] XU H, QIN L G, CHEN J, et al. Toward advanced sodium-ion batteries: a wheel-inspired yolk-shell design for large-volume-change anode materials[J]. Journal of Materials Chemistry A, 2018, 6(27): 13153-13163. [27] LIU Y N, LIU Y, CHOI W C, et al. Highly flexible, erosion resistant and nitrogen doped hollow SiC fibrous mats for high temperature thermal insulators[J]. Journal of Materials Chemistry A, 2017, 5(6): 2664-2672. |