[1] 林基泳, 蒋 勇, 吴兴颜, 等. 石粉对混凝土性能影响的研究现状[J]. 硅酸盐通报, 2018, 37(12): 3842-3848. LIN J Y, JIANG Y, WU X Y, et al. Research status on influence of aggregate micro fines on concrete performance[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3842-3848 (in Chinese). [2] 宋少民, 张鹏飞, 邝云辉. 低熟料胶凝材料混凝土耐久性研究[J]. 混凝土, 2019(4): 107-110. SONG S M, ZHANG P F, KUANG Y H. Study on durability of concrete with low clinkercem entitious material[J]. Concrete, 2019(4): 107-110 (in Chinese). [3] 罗素蓉, 王 圳, 王德辉. 掺石灰石粉混凝土抗硫酸盐侵蚀性能及改善机理[J]. 硅酸盐通报, 2020, 39(10): 3175-3183. LUO S R, WANG Z, WANG D H. Sulfate corrosion resistance and improvement mechanism of concrete mixed with limestone powder[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3175-3183 (in Chinese). [4] 史才军, 王德辉, 贾煌飞, 等. 石灰石粉在水泥基材料中的作用及对其耐久性的影响[J]. 硅酸盐学报, 2017, 45(11): 1582-1593. SHI C J, WANG D H, JIA H F, et al. Role of limestone powder and its effect on durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1582-1593 (in Chinese). [5] 戚传康. 复合石灰石粉混凝土收缩及耐久性能研究[D]. 徐州: 中国矿业大学, 2020. QI C K. Study on shrinkage and durability of composite limestone powder concrete[D]. Xuzhou: China University of Mining and Technology, 2020 (in Chinese). [6] 武智康. 复合石灰石粉-尾矿混合砂混凝土收缩性和耐久性研究[D]. 徐州: 中国矿业大学, 2021. WU Z K. Study on shrinkage and durability of composite limestone powder tailings mixed sand concrete[D]. Xuzhou: China University of Mining and Technology, 2021 (in Chinese). [7] 宿晓萍, 张 利, 郭金辉. 单盐侵蚀与冻融循环作用下混凝土耐久性能试验研究[J]. 工业建筑, 2014, 44(9): 110-113+6. SU X P, ZHANG L, GUO J H. Experimental study of concrete durability under the action of single salt corrosion and freezing-thawing cycles[J]. Industrial Construction, 2014, 44(9): 110-113+6 (in Chinese). [8] JIANG L, NIU D T, YUAN L D, et al. Durability of concrete under sulfate attack exposed to freeze-thaw cycles[J]. Cold Regions Science and Technology, 2015, 112: 112-117. [9] MING F, DU C, LIU Y, et al. Concrete durability under different circumstances based on multi-factor effects[J]. Sciences in Cold and Arid Regions, 2017, 9(4): 384-391. [10] SOTIRIADIS K, NIKOLOPOULOU E, TSIVILIS S. Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature[J]. Cement and Concrete Composites, 2012, 34(8): 903-910. [11] TIKKANEN J, CWIRZEN A, PENTTALA V. Freeze-thaw resistance of normal strength powder concretes[J]. Magazine of Concrete Research, 2015, 67(2): 71-81. [12] HUANG Z Y, SOOKREE E W, MOHAMOUD A H, et al. Influence of limestone powder and fly ash on the freezing and thawing resistance of roller-compacted concrete[J]. KSCE Journal of Civil Engineering, 2021, 25(7): 2501-2507. [13] DONZA H, CABRERA O, IRASSAR E F. High-strength concrete with different fine aggregate[J]. Cement and Concrete Research, 2002, 32(11): 1755-1761. [14] WANG R J, ZHANG Q J, LI Y. Deterioration of concrete under the coupling effects of freeze-thaw cycles and other actions: a review[J]. Construction and Building Materials, 2022, 319: 126045. [15] TSIVILIS S, BATIS G, CHANIOTAKIS E, et al. Properties and behavior of limestone cement concrete and mortar[J]. Cement and Concrete Research, 2000, 30(10): 1679-1683. [16] ADU-AMANKWAH S, ZAJAC M, SKOEK J, et al. Combined influence of carbonation and leaching on freeze-thaw resistance of limestone ternary cement concrete[J]. Construction and Building Materials, 2021, 307: 125087. [17] LI B X, WANG J L, ZHOU M K. Effect of limestone fines content in manufactured sand on durability of low- and high-strength concretes[J]. Construction and Building Materials, 2009, 23(8): 2846-2850. [18] ZHANG W Y, NA S, KIM J, et al. Evaluation of the combined deterioration by freeze-thaw and carbonation of mortar incorporating BFS, limestone powder and calcium sulfate[J]. Materials and Structures, 2017, 50(3): 171. [19] SHEN L H, LI Q H, GE W, et al. The mechanical property and frost resistance of roller compacted concrete by mixing silica fume and limestone powder: experimental study[J]. Construction and Building Materials, 2020, 239: 117882. [20] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development, People's Republic of China. General concrete mix design code: JGJ 55—2011[S]. Beijing: China Building and Construction Press, 2011 (in Chinese). [21] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development, People's Republic of China. Standard of test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Construction Press, 2009 (in Chinese). [22] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999: 24-25. WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Press, 1999: 24-25 (in Chinese). [23] 霍俊芳, 于乃领, 王 婷. 大掺量粉煤灰混凝土冻融损伤模型及剩余寿命预测[J]. 混凝土, 2013(12): 107-109. HUO J F, YU N L, WANG T. Fly ash concrete freeze-thaw damage model and residual life prediction[J]. Concrete, 2013(12): 107-109 (in Chinese). [24] 余寿文, 冯西桥. 损伤力学[M]. 北京: 清华大学出版社, 1997. YU S W, FENG X Q. Injury mechanics[M]. Beijing: Tsinghua University Press, 1997 (in Chinese). [25] 余红发, 孙 伟, 鄢良慧, 等. 混凝土使用寿命预测方法的研究I: 理论模型[J]. 硅酸盐学报, 2002, 30(6): 686-690. YU H F, SUN W, YAN L H, et al. Study on prediction of concrete service life I-theoretical model[J]. Journal of the Chinese Ceramic Society, 2002, 30(6): 686-690 (in Chinese). |