硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (7): 2629-2644.
所属专题: 道路材料
王新岐1, 邵捷2, 问鹏辉2, 曾伟1, 王朝辉2
收稿日期:
2023-02-27
修订日期:
2023-05-02
出版日期:
2023-07-15
发布日期:
2023-07-25
通信作者:
王朝辉,博士,教授。E-mail:wchh0205@chd.edu.cn
作者简介:
王新岐(1968—),男,博士,教授级高级工程师。主要从事道路工程设计及新材料的研发工作。E-mail:tjw2mz@126.com
基金资助:
WANG Xinqi1, SHAO Jie2, WEN Penghui2, ZENG Wei1, WANG Chaohui2
Received:
2023-02-27
Revised:
2023-05-02
Online:
2023-07-15
Published:
2023-07-25
摘要: 可控低强材料(CLSM)作为一种能够自密实填充狭窄空间、便于二次开挖维修、促进固废资源化利用的绿色回填材料,可应用于管廊及台背等回填工程。为提升固废材料在CLSM中的应用水平,科学合理地指导CLSM材料组成设计,明确多因素影响下CLSM工作性能演变规律,本文系统梳理了CLSM固化材料和固化基料选用现状,并总结了固废材料在CLSM中的应用情况,对比评价了CLSM工作性能相关技术指标规范和测试标准,阐明了CLSM流动度、泌水率、凝结时间、干缩等工作性能在不同因素影响下的演变规律。鉴于当前CLSM相关研究已取得显著进展,进一步研究不同应用场景下基于综合性能调控的CLSM组成设计是推广CLSM工程应用亟待攻关的方向。
中图分类号:
王新岐, 邵捷, 问鹏辉, 曾伟, 王朝辉. 绿色可控低强材料组成与工作性能研究进展[J]. 硅酸盐通报, 2023, 42(7): 2629-2644.
WANG Xinqi, SHAO Jie, WEN Penghui, ZENG Wei, WANG Chaohui. Research Progress on Composition and Working Performance of Green Controlled Low Strength Material[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2629-2644.
[1] 张正一, 王朝辉, 张 廉, 等. 中国绿色公路建设与评估技术[J]. 长安大学学报(自然科学版), 2018, 38(5): 76-86. ZHANG Z Y, WANG C H, ZHANG L, et al. Construction and assessment technology of green road in China[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(5): 76-86 (in Chinese). [2] CHEN J Q, DAN H C, DING Y J, et al. New innovations in pavement materials and engineering: a review on pavement engineering research 2021[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(6): 815-999. [3] 于华洋, 马涛, 王大为, 等. 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(3): 1-49. YU H Y, MA T, WANG D W, et al. Review on China's subgrade engineering Research·2021[J]. China Journal of Highway and Transport, 2021, 34(3): 1-49 (in Chinese). [4] DO T M, KANG G O, KIM Y S. Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products[J]. Construction and Building Materials, 2019, 206: 576-589. [5] DO T M, KIM Y S, DANG M Q. Influence of curing conditions on engineering properties of controlled low strength material made with cementless binder[J]. KSCE Journal of Civil Engineering, 2017, 21(5): 1774-1782. [6] DO T M, KANG G O, GO G H, et al. Evaluation of coal ash-based CLSM made with cementless binder as a thermal grout for borehole heat exchangers[J]. Journal of Materials in Civil Engineering, 2019, 31(6): 1-11. [7] LACHEMI M, HOSSAIN K M A, SHEHATA M, et al. Controlled low strength materials incorporating cement kiln dust from various sources[J]. Cement and Concrete Composites, 2008, 30(5): 381-392. [8] 张雪松, 俞然刚, 陈金平, 等. 废弃输油管道充填用可控低强度材料性能研究[J]. 硅酸盐通报, 2017, 36(6): 1823-1829+1840. ZHANG X S, YU R G, CHEN J P, et al. Properties of controlled low-strength materials using in waste oil pipeline[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1823-1829+1840 (in Chinese). [9] 王 帅. 利用地铁盾构渣土制备可控低强度材料的研究[D]. 郑州: 郑州大学, 2020. WANG S. Study on preparation of controllable low-strength materials from subway shield dregs[D]. Zhengzhou: Zhengzhou University, 2020 (in Chinese). [10] ETXEBERRIA M, AINCHIL J, PÉREZ M E, et al. Use of recycled fine aggregates for control low strength materials (CLSMs) production[J]. Construction and Building Materials, 2013, 44: 142-148. [11] YAN D Y S, TANG I Y, LO I M C. Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction[J]. Construction and Building Materials, 2014, 64: 201-207. [12] MNEINA A, SOLIMAN A M, AHMED A, et al. Engineering properties of controlled low-strength materials containing treated oil sand Waste[J]. Construction and Building Materials, 2018, 159: 277-285. [13] WANG L, ZOU F L, FANG X L, et al. A novel type of controlled low strength material derived from alum sludge and green materials[J]. Construction and Building Materials, 2018, 165: 792-800. [14] KUO W T, GAO Z C. Engineering properties of controlled low-strength materials containing bottom ash of municipal solid waste incinerator and water filter silt[J]. Applied Sciences, 2018, 8(8): 1377. [15] KUO W T, WANG H Y, SHU C Y, et al. Engineering properties of controlled low-strength materials containing waste oyster shells[J]. Construction and Building Materials, 2013, 46: 128-133. [16] 雷 霆. 建筑垃圾低强度流动化回填材料性能优化及中试研究[D]. 北京: 北京工业大学, 2017. LEI T. Performance optimization and pilot study of low-strength fluidized backfill materials for construction waste[D]. Beijing: Beijing University of Technology, 2017 (in Chinese). [17] WU H, YIN J, BAI S. Experimental investigation of utilizing industrial waste and byproduct materials in controlled low strength materials (CLSM)[J]. Advanced Materials Research, 2013, 639/640: 299-303. [18] WANG H Y. A study of the engineering properties of waste LCD glass applied to controlled low strength materials concrete[J]. Construction and Building Materials, 2009, 23(6): 2127-2131. [19] DEV K L, ROBINSON R G. Cyclic behaviour of pond ash-based controlled low strength material[C]//Geotechnical Characterization and Modelling. Singapore: Springer, 2020: 609-621. [20] 潘 东. 磨细渣土对水泥基材料水化及其性能的影响研究[D]. 南京: 东南大学, 2019. PAN D. Study on the influence of ground muck on hydration and properties of cement-based materials[D]. Nanjing: Southeast University, 2019 (in Chinese). [21] KIM Y S, DO T M, KIM M J, et al. Utilization of by-product in controlled low-strength material for geothermal systems: engineering performances, environmental impact, and cost analysis[J]. Journal of Cleaner Production, 2018, 172: 909-920. [22] WU J Y, LIN YI JIAN. Use of reservoir siltation as CLSM for subgrade constructions[J]. Advanced Materials Research, 2013, 723: 535-542. [23] NAGANATHAN S, RAZAK H A, HAMID S N A. Effect of Kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2010, 28(9): 848-860. [24] TAFESSE M, KIM H K. Effect of pretreatment of mine tailings on the performance of controlled low strength materials[J]. Korean Inst of Resources Recycling, 2017, 26(3): 32-38. [25] 朱瑜星, 卞 怡, 闵凡路, 等. 地铁盾构渣土改良为流动化土进行应用试验研究[J]. 土木工程学报, 2020, 53(增刊1): 245-251. ZHU Y X, BIAN Y, MIN F L, et al. Improvement of metro shield muck to controlled low-strength material. China Civil Engineering Journal, 2020, 53(supplement 1): 245-251 (in Chinese) [26] WU J Y, LIN Y J, WU J Y, et al. Experimental study of reservoir siltation as CLSM for backfill applications[C]//Geo-Frontiers Congress 2011. March 13-16, 2011, Dallas, Texas, USA. Reston, VA, USA: American Society of Civil Engineers, 2011: 1217-1226. [27] WU J Y, TSAI M. Feasibility study of a soil-based rubberized CLSM[J]. Waste Management, 2009, 29(2): 636-642. [28] MIRDAMADI A, SHAMSABADI S S, KASHI M G, et al. Geotechnical properties of controlled low strength materials (CLSM) using waste electric arc furnace dust (EAFD)[C]//GeoHunan International Conference 2009. American Society of Civil Engineers, 2009: 80-86. [29] 朱 伟, 赵 笛, 范惜辉, 等. 渣土改良为流动化回填土的应用[J]. 河海大学学报(自然科学版), 2021, 49(2): 134-139. ZHU W, ZHAO D, FAN X H, et al. Research on application of residue soil-based flowable fill[J]. Journal of Hohai University (Natural Sciences), 2021, 49(2): 134-139 (in Chinese). [30] SIVAKUMAR N, HASHIM A R, NADZRIAH A H S. Effect of quarry dust addition on the performance of controlled low-strength material made from industrial waste incineration bottom ash[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(6): 536-541. [31] 李建望. 河道淤泥流动化处理及其稳定性研究[D]. 苏州: 苏州科技学院, 2009. LI J W. Study on fluidization treatment and stability of river sludge[D]. Suzhou: Suzhou University of Science and Technology, 2009 (in Chinese). [32] 郝 彤, 王 帅, 冷发光. 利用地铁盾构渣土制备高流态充填材料[J]. 硅酸盐通报, 2020, 39(5): 1525-1532. HAO T, WANG S, LENG F G. Preparation of high fluid filling materials by using subway shield muck[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1525-1532 (in Chinese). [33] WANG H Y, CHEN K W. A study of the engineering properties of CLSM with a new type of slag[J]. Construction and Building Materials, 2016, 102: 422-427. [34] WANG H Y, CHEN B T, WU Y W. A study of the fresh properties of controlled low-strength rubber lightweight aggregate concrete (CLSRLC)[J]. Construction and Building Materials, 2013, 41: 526-531. [35] FARRAG K. Controlled low-strength material used around buried pipelines[J]. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2251(1): 157-164. [36] BOUZALAKOS S, DUDENEY A W L, CHEESEMAN C R. Controlled low-strength materials containing waste precipitates from mineral processing[J]. Minerals Engineering, 2008, 21(4): 252-263. [37] 贾冬冬. 低强度流动性建筑垃圾回填材料基本性能研究[D]. 北京: 北京工业大学, 2014. JIA D D. Study on basic properties of low-strength fluidity construction waste backfill materials[D]. Beijing: Beijing University of Technology, 2014 (in Chinese). [38] ALIZADEH V, HELWANY S, GHORBANPOOR A, et al. Design and application of controlled low strength materials as a structural fill[J]. Construction and Building Materials, 2014, 53: 425-431. [39] KIM Y S, DINH B H, DO T M, et al. Development of thermally enhanced controlled low-strength material incorporating different types of steel-making slag for ground-source heat pump system[J]. Renewable Energy, 2020, 150: 116-127. [40] HUANG L J, WANG H Y, WEI C T. Engineering properties of controlled low strength desulfurization slags (CLSDS)[J]. Construction and Building Materials, 2016, 115: 6-12. [41] SHEEN Y N, HUANG L J, LE D H. Engineering properties of controlled low-strength material made with residual soil and class F fly ash[J]. Applied Mechanics and Materials, 2014, 597: 345-348. [42] WENG T L, LIN W T, LIU Y L. Engineering properties of controlled low-strength materials containing co-fired fly ash[J]. Monatshefte Für Chemie-Chemical Monthly, 2017, 148(7): 1337-1347. [43] SINGH V K, DAS S K. Engineering properties of industrial by-products-based controlled low-strength material[C]//Problematic Soils and Geoenvironmental Concerns. Singapore: Springer, 2021: 277-294. [44] QIAN J S, HU Y Y, ZHANG J K, et al. Evaluation the performance of controlled low strength material made of excess excavated soil[J]. Journal of Cleaner Production, 2019, 214: 79-88. [45] LEE K J, KIM S K, LEE K H. Flowable backfill materials from bottom ash for underground pipeline[J]. Materials, 2014, 7(5): 3337-3352. [46] GEMPERLINE C S, DURHAM S, GEMPERLINE C S, et al. Beneficial use of recycled materials in controlled low strength materials[C]//International Conference on Pipelines and Trenchless Technology. 2012, Wuhan, China. Reston, VA: American Society of Civil Engineers, 2012: 1305-1316. [47] BYUN Y H, HAN W, TUTUMLUER E, et al. Elastic wave characterization of controlled low-strength material using embedded piezoelectric transducers[J]. Construction and Building Materials, 2016, 127: 210-219. [48] RAN J, ZHANG J, YANG M, et al. Controlled low-strength material incorporating recycled fine aggregate from urban red brick based construction waste[J]. Journal of Southeast University, 2017, 33(4): 496-501. [49] TRKEL S. Long-term compressive strength and some other properties of controlled low strength materials made with pozzolanic cement and Class C fly ash[J]. Journal of Hazardous Materials, 2006, 137(1): 261-266. [50] 李 雪, 黄 琦, 王培鑫, 等. 粉细砂地层泥水盾构渣土回收利用及性能优化[J]. 建筑材料学报, 2019, 22(2): 299-307. LI X, HUANG Q, WANG P X, et al. Back-fill grouting and proper performance for discharged soils reuse of the slurry shield tunnel on sand stratum[J]. Journal of Building Materials, 2019, 22(2): 299-307(in Chinese). [51] DO T M, DO A N, KANG G O, et al. Utilization of marine dredged soil in controlled low-strength material used as a thermal grout in geothermal systems[J]. Construction and Building Materials, 2019, 215: 613-622. [52] JANG J G, PARK S M, CHUNG S, et al. Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator[J]. Construction and Building Materials, 2018, 159: 642-651. [53] 邵钰清, 贾冬冬. 基于北京市建筑垃圾细料生产再生回填材料的研究[J]. 新型建筑材料, 2014, 41(11): 36-40. SHAO Y Q, JIA D D. Research on regenerated backfilling material production based on the Beijing construction waste material[J]. New Building Materials, 2014, 41(11): 36-40 (in Chinese). [54] WU H, HUANG B S, SHU X, et al. Utilization of solid wastes/byproducts from paper mills in controlled low strength material (CLSM)[J]. Construction and Building Materials, 2016, 118: 155-163. [55] LIM S, LEE W, CHOO H, et al. Utilization of high carbon fly ash and copper slag in electrically conductive controlled low strength material[J]. Construction and Building Materials, 2017, 157: 42-50. [56] KUBISSA W, JASKULSKI R, SZPETULSKI J, et al. Utilization of fine recycled aggregate and the calcareous fly ash in CLSM manufacturing[J]. Advanced Materials Research, 2014, 1054: 199-204. [57] 鲍远琴. 自流平回填材料的研制及其在检查井中的应用[D]. 合肥: 合肥工业大学, 2013. BAO Y Q. Development of self-leveling backfill material and its application in inspection well[D]. Hefei: Hefei University of Technology, 2013 (in Chinese). [58] 郝 彤, 李鑫箫, 冷发光, 等. 郑州市地铁粉质黏土层中盾构渣土制备同步注浆材料特性[J]. 长安大学学报(自然科学版), 2020, 40(3): 53-62. HAO T, LI X X, LENG F G, et al. Synchronous grouting materials for shield slag in silty clay of Zhengzhou metro[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(3): 53-62 (in Chinese). [59] 魏建军, 张金喜, 王建刚. 建筑垃圾细料生产流动化回填材料的性能[J]. 土木建筑与环境工程, 2016, 38(3): 96-103. WEI J J, ZHANG J X, WANG J. Properties of flowable backfill materials using recycled fine aggregates of brick and concrete waste[J]. Journal of Civil,Architectural & Environmental Engineering, 2016, 38(3): 96-103 (in Chinese). [60] 刘 萌. 建筑渣土制备可控低强材料及性能研究[D]. 北京: 北京建筑大学, 2016. LIU M. Study on preparation and properties of controllable low strength materials from construction waste residue[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2016 (in Chinese). [61] RAGHAVENDRA T, UDAYASHANKAR B C. Engineering properties of controlled low strength materials using flyash and waste gypsum wall boards[J]. Construction and Building Materials, 2015, 101: 548-557. [62] 史庆涛, 武文清, 陆 野. 含废弃泥浆和渣土同步砂浆配比优化及性能改善分析[J]. 三峡大学学报(自然科学版), 2020, 42(4): 101-105. SHI Q T, WU W Q, LU Y. Mix proportion optimization and performance improvement analysis of synchronous mortar with waste mud and residue[J]. Journal of China Three Gorges University (Natural Sciences), 2020, 42(4): 101-105 (in Chinese). [63] 冯忠民. 大连湾海底淤泥流动固化土室内试验研究[D]. 保定: 河北大学, 2020. FENG Z M. Laboratory experimental study on solidified soil of seabed silt flow in Dalian Bay[D]. Baoding: Hebei University, 2020 (in Chinese). [64] 丁建文, 张 帅, 洪振舜. 高含水率疏浚淤泥流动固化处理试验研究[J]. 水运工程, 2009(6): 30-34. DING J W, ZHANG S, HONG Z. Experimental study on solidification in flowing state of dredged clay with high water content[J]. Port & Waterway Engineering, 2009(6): 30-34 (in Chinese). [65] LE D H, NGUYEN K H. An assessment of eco-friendly controlled low-strength material[J]. Procedia Engineering, 2016, 142: 260-267. [66] SHEEN Y N, ZHANG L H, LE D H. Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement[J]. Construction and Building Materials, 2013, 48: 822-829. [67] SHEEN Y N, HUANG L J, WANG H Y, et al. Experimental study and strength formulation of soil-based controlled low-strength material containing stainless steel reducing slag[J]. Construction and Building Materials, 2014, 54: 1-9. [68] LEE N K, KIM H K, PARK I S, et al. Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products[J]. Construction and Building Materials, 2013, 49: 738-746. [69] HWANG C L, HUYNH T P. Characteristics of alkali-activated controlled low-strength material derived from red mud-slag blends[J]. Key Engineering Materials, 2017, 753: 343-348. [70] PARK S M, LEE N K, LEE H K. Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation[J]. Construction and Building Materials, 2017, 156: 728-738. [71] 庞云泽. 采空区充填碱渣注浆材料的特性研究[D]. 天津: 河北工业大学, 2017. PANG Y Z. Study on characteristics of grouting material filled with alkali slag in goaf[D]. Tianjin: Hebei University of Technology, 2017 (in Chinese). [72] HWANG C L, CHIANG C H, HUYNH T P, et al. Evaluation of fresh properties of controlled low-strength material produced from water treatment sludge-fly ash-slag mixture using alkaline activation[J]. Applied Mechanics and Materials, 2018, 878: 28-34. [73] KIM Y S, DO T M, KIM H K, et al. Utilization of excavated soil in coal ash-based controlled low strength material (CLSM)[J]. Construction and Building Materials, 2016, 124: 598-605. [74] KATZ A, KOVLER K. Utilization of industrial by-products for the production of controlled low strength materials (CLSM)[J]. Waste Management, 2004, 24(5): 501-512. [75] KALIYAVARADHAN S K, LING T, GUO M Z, et al. Waste resources recycling in controlled low-strength material (CLSM): a critical review on plastic properties[J]. Journal of Environmental Management, 2019 [76] HORIGUCHI T, FUJITA R, SHIMURA K. Applicability of controlled low-strength materials with incinerated sewage sludge ash and crushed-stone powder[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 767-771. [77] RAZAK H A, NAGANATHAN S, HAMID S N A. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material[J]. Journal of Hazardous Materials, 2009, 172(2/3): 862-867. [78] 独立法人土木研究所, 株式会社流動化処理工法総合監理. 流動化処理土利用技術マニュアル[S]. 東京: 技報堂出版, 2007 独立法人土木研究所, 株式会社流动化处理工法合编. 流动化处理土利用技术[S]. 东京: 技报堂出版社, 2007 (in Japanese). [79] 孔祥辉, 闫振强, 荣 殊, 等. 工业固废赤泥用于粉土流动化回填材料的制备与性能研究[J]. 长江科学院院报, 2020, 37(12): 86-91. KONG X H, YAN Z Q, RONG S, et al. Preparation and properties of flowable silt backfill materials containing industrial solid waste red mud[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(12): 86-91 (in Chinese). [80] GABR M A, BOWDERS J J. Controlled low-strength material using fly ash and AMD sludge[J]. Journal of Hazardous Materials, 2000, 76(2/3): 251-263. |
[1] | 景国建, 徐凯丽, 徐兴伟, 牛腾, 韩乐冰. 聚合氯化铝对聚羧酸减水剂黏土吸附性的影响[J]. 硅酸盐通报, 2023, 42(7): 2354-2360. |
[2] | 王聪聪, 刘茂青, 宋红旗, 庚利民, 杜红秀. 赤泥-钢渣粉-水泥固化流态土性能试验研究[J]. 硅酸盐通报, 2023, 42(7): 2488-2496. |
[3] | 赵立, 孙江涛, 吴定略, 李志堂, 何涛, 关业程, 沈卫国. 石屑湿喷混凝土的制备与性能研究[J]. 硅酸盐通报, 2023, 42(3): 1016-1024. |
[4] | 王晶, 陶耀华, 于康, 赵佳一, 庄凤明, 李辉. 混凝土帆布力学性能与应用研究进展[J]. 硅酸盐通报, 2023, 42(1): 22-30. |
[5] | 龚芳媛, 拜佳威, 王书岳, 邓锐, 程雪佼. 3D打印制备人工集料及性能研究[J]. 硅酸盐通报, 2023, 42(1): 352-363. |
[6] | 林俊涛, 夏宇, 李伟, 解传凯. 地聚物稳定废旧沥青混合料的强度与微观结构研究[J]. 硅酸盐通报, 2023, 42(1): 364-372. |
[7] | 刘名扬, 周彬, 颜峰, 陈龙江, 侯美晴. 铁尾矿-钢渣集料微表处混合料路用性能及耐久性试验研究[J]. 硅酸盐通报, 2022, 41(9): 3176-3189. |
[8] | 李申桐, 杨勇, 周栋梁, 胡聪, 刘金芝, 张志勇. 疏水改性聚醚合成聚羧酸减水剂及其降粘性能研究[J]. 硅酸盐通报, 2022, 41(7): 2251-2257. |
[9] | 赵正峰, 王笑风, 王国栋, 褚付克, 闫毅军, 王晔晔, 殷卫永. 工业废渣复合胶凝材料泡沫轻质土制备及性能[J]. 硅酸盐通报, 2022, 41(6): 2108-2116. |
[10] | 牟新宇, 于子浩, 鲍玖文, 张鹏. 自密实再生混凝土工作及力学性能研究进展[J]. 硅酸盐通报, 2022, 41(5): 1638-1648. |
[11] | 杨智敏, 曾国鹏, 郭寅川, 肖葳, 毛松纯, 牟戈. 离析对湿热地区沥青混合料长期水稳定性的影响[J]. 硅酸盐通报, 2022, 41(3): 1094-1101. |
[12] | 曾昊, 谭幸淼, 梁超锋. 花岗岩废砂粉对水泥基材料性能影响的研究进展[J]. 硅酸盐通报, 2022, 41(2): 390-400. |
[13] | 向阳开, 刘威震, 赵毅, 张庆宇, 张艳娟. 钢渣沥青混合料微波加热自愈合性能研究[J]. 硅酸盐通报, 2022, 41(2): 667-677. |
[14] | 吴启一, 姚华彦, 扈惠敏, 许泽宁, 吴林松, 鲍犇. 玄武岩纤维对水泥稳定多孔玄武岩碎石力学性能的影响[J]. 硅酸盐通报, 2022, 41(1): 192-198. |
[15] | 木莲, 金佳宏, 刘侠, 鞠健, 董长江, 闫春梅. 溶剂型冷补沥青的开发及性能评价[J]. 硅酸盐通报, 2022, 41(1): 342-353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||