[1] 房娜仁, 王选仓, 叶宏宇, 等. 大厚度水稳基层双层连续摊铺塑性变形分析[J]. 重庆大学学报, 2019, 42(7): 70-78. FANG N R, WANG X C, YE H Y, et al. Plastic deformation analysis of double-layer continuous paving for large thickness water stabilized base course[J]. Journal of Chongqing University, 2019, 42(7): 70-78 (in Chinese). [2] 田耀刚, 石帅锋, 刘 芳, 等. 整体大厚度水泥稳定碎石基层耐久性研究[J]. 河南理工大学学报(自然科学版), 2015, 34(3): 420-425. TIAN Y G, SHI S F, LIU F, et al. Study on durability of entirety large thickness cement stabilized macadam[J]. Journal of Henan Polytechnic University (Natural Science), 2015, 34(3): 420-425 (in Chinese). [3] 安 平, 高俊启, 盛余祥. 离析对水泥稳定碎石强度的影响及其控制[J]. 公路, 2016, 61(1): 23-26. AN P, GAO J Q, SHENG Y X. Influence and control of segregation on the strength of cement stabilized gravel[J]. Highway, 2016, 61(1): 23-26 (in Chinese). [4] 张 诚, 吴先金, 章奏东, 等. 沥青混合料离析的评价方法分析[J]. 公路交通科技(应用技术版), 2012, 8(6): 193-195. ZHANG C, WU X J, ZHANG Z D, et al. Analysis on evaluation method of asphalt mixture segregation[J]. Highway Traffic Technology (Application Technology Edition), 2012, 8(6): 193-195 (in Chinese). [5] 张 苛, 崔文社, 张争奇, 等. 基于室内试验的沥青混合料离析标准研究[J]. 武汉理工大学学报, 2014, 36(5): 55-61. ZHANG K, CUI W S, ZHANG Z Q, et al. Study on asphalt mixture segregation criteria based on laboratory tests[J]. Journal of Wuhan University of Technology, 2014, 36(5): 55-61 (in Chinese). [6] ZHANG Y H, QIAN Z D, CHEN L L, et al. Research on the segregation and mechanical properties of epoxy asphalt concrete under the condition of train vibration in road-railway bridge[J]. Construction and Building Materials, 2022, 353: 129107. [7] HU T, YUAN J, ZHOU X L, et al. A two-dimensional entropy-based method for detecting the degree of segregation in asphalt mixture[J]. Construction and Building Materials, 2022, 347: 128450. [8] 陈 潇, 周明凯. 级配对基层混合料离析影响的理论分析[J]. 公路, 2012, 57(6): 191-194. CHEN X, ZHOU M K. Theoretical analysis of influence of graduation on segregation of mixture of base course[J]. Highway, 2012, 57(6): 191-194 (in Chinese). [9] 盛燕萍, 李亮亮, 关博文, 等. 高寒地区水镁石纤维早强型水泥稳定碎石的路用性能研究[J]. 冰川冻土, 2018, 40(2): 355-361. SHENG Y P, LI L L, GUAN B W, et al. Study on the performance of gravel road stabilized by early strength agent and brucite fibers in alpine regions[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 355-361 (in Chinese). [10] 曾梦澜, 薛子龙, 谷世君, 等. 开级配水泥稳定碎石基层路用性能的试验研究[J]. 北京工业大学学报, 2015, 41(4): 579-583. ZENG M L, XUE Z L, GU S J, et al. Trial study on the pavement performance of open graded cement stabilized aggregate base[J]. Journal of Beijing University of Technology, 2015, 41(4): 579-583 (in Chinese). [11] SHU X J, ZHAO Y, LIU Z, et al. A study on the mix proportion of fiber-polymer composite reinforced cement-based grouting material[J]. Construction and Building Materials, 2022, 328: 127025. [12] 马士宾, 曲 磊, 任俊财, 等. 基于最优混合设计法的掺膨胀剂的水泥稳定碎石配合比设计[J]. 公路, 2022, 67(1): 63-69. MA S B, QU L, REN J C, et al. Mix proportion design of cement stabilized macadam mixed with expansive agent based on optimal mixed design method[J]. Highway, 2022, 67(1): 63-69 (in Chinese). [13] ZHANG K, ZHANG Z Q, LUO Y F. Inspection method and evaluation standard based on cylindrical core sample for rutting resistance of asphalt pavement[J]. Measurement, 2018, 117: 241-251. [14] 徐 程. 振动拌和对水泥稳定碎石性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. XU C. Study on the effect of vibration mixing on the performance of cement stabilized macadam[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). [15] 胡力群, 牛 刚. 骨架密实结构水泥稳定碎石离析原因及改善措施[J]. 筑路机械与施工机械化, 2005, 22(12): 27-29+33. HU L Q, NIU G. Skeleton-closed cement stabilized crush stone mixturesegregation and its improvement[J]. Road Machinery & Construction Mechanization, 2005, 22(12): 27-29+33 (in Chinese). [16] 中华人民共和国交通运输部. 公路路面基层施工技术细则: JTG/T F20—2015[S]. 北京: 人民交通出版社, 2015. Ministry of Transport of the People's Republic of China.Technical rules for construction of highway pavement base: JTG/T F20—2015[S]. Beijing: People's Traffic Press, 2015 (in Chinese). [17] 梁春雨, 郭有蒙, 张利东, 等. 季冻区多指标水泥稳定碎石性能评价及级配优选[J]. 吉林大学学报(工学版), 2020, 50(3): 998-1005. LIANG C Y, GUO Y M, ZHANG L D, et al. Performance evaluation and gradation optimal selection of multi-index cement stabilized macadam in seasonal frozen area[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 998-1005 (in Chinese). [18] 陈 柯, 孙 芬, 梁 爽, 等. 基于振动搅拌技术高寒地区基层抗冻性与抗裂性试验研究[J]. 材料导报, 2021, 35(S1): 291-296. CHEN K, SUN F, LIANG S, et al. Experimental study on frost resistance and crack resistance of bases in cold areas based on vibration mixing technology[J]. Materials Reports, 2021, 35(S1): 291-296 (in Chinese). [19] ZHANG R Y, DAI H L, WANG Y D. Vibratory compaction response based on the contact model of roller-subgrade system[J]. Construction and Building Materials, 2022, 351: 128798. [20] LEONARD L, EKWUE E I, TAYLOR A, et al. Evaluation of a machine to determine maximum bulk density of soils using the vibratory method[J]. Biosystems Engineering, 2019, 178: 109-117. [21] LIANG J L, LI Y L, YANG X L, et al. Study on vibratory leaching behavior and damage evolution of cement stabilized macadam (CSM)[J]. Case Studies in Construction Materials, 2022, 17: e01151. [22] YI Y, JIANG Y J, TIAN T, et al. Mechanical-strength-growth law and predictive model for ultra-large size cement-stabilized macadam based on the vertical vibration compaction method[J]. Construction and Building Materials, 2022, 324: 126691. [23] YAN K Z, LI G K, YOU L Y, et al. Performance assessments of open-graded cement stabilized macadam containing recycled aggregate[J]. Construction and Building Materials, 2020, 233: 117326. |