[1] 杨海瑞, BO L, RAFAL K, 等. 国际对话: “碳达峰、碳中和”背景下循环流化床锅炉的发展与挑战[J]. 电力学报, 2022, 37(2): 118-120. YANG H R, BO L, RAFAL K, et al. International dialogue: development and challenge of circulating fluidized bed boiler under the background of “peak carbon dioxide emissions, carbon neutralization”[J]. Journal of Electric Power, 2022, 37(2): 118-120 (in Chinese). [2] 杨 蔚, 董发勤, 何 平. 燃煤固硫灰渣的特性及其资源化利用现状[J]. 粉煤灰综合利用, 2013, 26(4): 50-52+56. YANG W, DONG F Q, HE P. The characteristics and resource utilization status of coal-fired desulphurization ash residue[J]. Fly Ash Comprehensive Utilization, 2013, 26(4): 50-52+56 (in Chinese). [3] 朱文尚. 循环流化床固硫灰特性及作水泥混合材应用的研究[D]. 北京: 中国建筑材料科学研究总院, 2011: 1-3. ZHU W S. Study on the characteristics of sulfur-fixing ash in circulating fluidized bed and its application as cement admixture[D]. Beijing: China Building Materials Academy, 2011: 1-3 (in Chinese). [4] 何科文, 卢忠远, 李 军, 等. 循环流化床固硫灰渣性能比较研究[J]. 武汉理工大学学报, 2014, 36(3): 6-13. HE K W, LU Z Y, LI J, et al. Comparative study on properties of circulating fluidized bed combustion ash and slag[J]. Journal of Wuhan University of Technology, 2014, 36(3): 6-13 (in Chinese). [5] 宋远明, 钱觉时, 王 智, 等. 固硫灰渣的微观结构与火山灰反应特性[J]. 硅酸盐学报, 2006, 34(12): 1542-1546. SONG Y M, QIAN J S, WANG Z, et al. Microstructure and pozzolanic reactivity of fluidized bed combustion ashes[J]. Journal of the Chinese Ceramic Society, 2006, 34(12): 1542-1546 (in Chinese). [6] LI D F, KE X W, ZHANG M, et al. A comprehensive mass balance model of a 550 MWe ultra-supercritical CFB boiler with internal circulation[J]. Energy, 2020, 206: 117941. [7] MIAO M, DENG B Y, YAO X, et al. Experimental study on calcination and fragmentation characteristics of limestone in fluidized bed[J]. Journal of the Energy Institute, 2021, 95: 206-218. [8] LIU J J, QIAO X L, FENG C Y, et al. Research on microcosmic characteristics of fly ash from circulating fluidized bed boilers[J]. Journal of the China Coal Society, 2011, 36(11): 1922-1927. [9] JONES M R, MCCARTHY A, BOOTH A P P G. Characteristics of the ultrafine component of fly ash[J]. Fuel, 2006, 85(16): 2250-2259. [10] 张家家, 周明凯, 李北星. CFB灰渣制备轻质混凝土的性能研究[J]. 新型建筑材料, 2020, 47(12): 10-14+74. ZHANG J J, ZHOU M K, LI B X. Research on the performance of lightweight concrete made from CFB ash and slag[J]. New Building Materials, 2020, 47(12): 10-14+74 (in Chinese). [11] 周明凯, 叶 青, 陈 潇, 等. CFB灰渣抹灰砂浆的组成设计与性能研究[J]. 硅酸盐通报, 2022, 41(2): 425-432+449. ZHOU M K, YE Q, CHEN X, et al. Composition design and performance of CFB fly ash and CFB slag plastering mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 425-432+449 (in Chinese). [12] 王 杰, 王 勇, 王宇强, 等. 循环流化床燃煤固硫灰的CBR特性及膨胀机理研究[J]. 硅酸盐通报, 2023, 42(4): 1323-1332. WANG J, WANG Y, WANG Y Q, et al. Study on CBR characteristics and expansion mechanism of circulating fluidized bed fly ash[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1323-1332 (in Chinese). [13] 宋 强, 张 鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410. SONG Q, ZHANG P, BAO J W, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410 (in Chinese). [14] 王静文, 刘旭照, 尹泽飞, 等. 泡沫混凝土生产应用现状与前景分析[J]. 中国建材科技, 2018, 27(6): 44-47. WANG J W, LIU X Z, YIN Z F, et al. Present situation and prospect of production and application of foamed concrete[J]. China Building Materials Science & Technology, 2018, 27(6): 44-47 (in Chinese). [15] 周明杰, 王娜娜, 赵晓艳, 等. 泡沫混凝土的研究和应用最新进展[J]. 混凝土, 2009(4): 104-107. ZHOU M J, WANG N N, ZHAO X Y, et al. Latest development of research and application on foam concrete[J]. Concrete, 2009(4): 104-107 (in Chinese). [16] 潘志华, 程 麟, 李东旭, 等. 新型高性能泡沫混凝土制备技术研究[J]. 新型建筑材料, 2002, 29(5): 1-5. PAN Z H, CHENG L, LI D X, et al. Study on preparation technology of new high performance foamed concrete[J]. New Building Materials, 2002, 29(5): 1-5 (in Chinese). [17] ZHOU M K, CHEN P, CHEN X, et al. Study on hydration characteristics of circulating fluidized bed combustion fly ash (CFBCA)[J]. Construction and Building Materials, 2020, 251: 118993. [18] 杨晓炳, 王永定, 高 谦, 等. 利用脱硫灰渣和粉煤灰开发充填胶凝材料及在金川矿山应用[J]. 矿产综合利用, 2019(4): 130-134. YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials based on desulphurization ash and fly ash and its application in Jinchuan Mine[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 130-134 (in Chinese). [19] 钱潘悦, 龚明子, 黄 斌, 等. 基于图像分析技术的粉煤灰颗粒形貌表征[J/OL]. 建筑材料学报, 2022: 1-10 [2022-06-14]. https://kns.cnki.net/kcms/detail/31.1764.TU.20220613.1706.014.html. QIAN P Y, GONG M Z, HUANG B, et al. Characterization of fly ash particle morphology based on image analysis[J/OL]. Journal of Building Materials, 2022: 1-10 [2022-06-14]. https://kns.cnki.net/kcms/detail/31.1764.TU.20220613.1706.014.html (in Chinese). [20] 刘 军, 崔云鹏, 杨元全, 等. 粉煤灰泡沫混凝土力学性能的研究[J]. 材料导报, 2014, 28(8): 139-142. LIU J, CUI Y P, YANG Y Q, et al. Mechanical properties of foam concrete with fly ash[J]. Materials Review, 2014, 28(8): 139-142 (in Chinese). [21] 邓最亮. 多孔和层状骨料对聚羧酸减水剂的吸附及其对砂浆流变性的影响[D]. 上海: 华东理工大学, 2021: 52-55. DENG Z L. Adsorption of porous and layered aggregates on polycarboxylic water reducer and its influence on the rheological properties of mortar[D]. Shanghai: East China University of Science and Technology, 2021: 52-55 (in Chinese). [22] 何 燕, 张 雄, 张永娟. 硫酸盐影响聚羧酸减水剂分散性的作用机理[J]. 同济大学学报(自然科学版), 2015, 43(2): 252-258. HE Y, ZHANG X, ZHANG Y J. Effect of sulfates on dispersity of polycarboxylate superplasticizer and its mechanism[J]. Journal of Tongji University (Natural Science), 2015, 43(2): 252-258 (in Chinese). [23] SHENG G H, LI Q, ZHAI J P. Investigation on the hydration of CFBC fly ash[J]. Fuel, 2012, 98: 61-66. [24] SHENG G H, ZHAI J P, LI Q, et al. Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement[J]. Fuel, 2007, 86(16): 2625-2631. [25] 袁志颖, 陈 波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J/OL]. 复合材料学报, 2023: 1-11 [2023-03-07]. https://doi.org/10.13801/j.cnki.fhclxb.20221014.001. YUAN Z Y, CHEN B, CHEN J L, et al. Characterization of the pore structure of foam concrete and its influence on mechanical properties[J/OL]. Acta Materiae Compositae Sinica, 2023: 1-11 [2023-03-07]. https://doi.org/10.13801/j.cnki.fhclxb.20221014.001 (in Chinese). [26] 赵凯月, 张 鹏, 孔祥明, 等. 硅酸盐水泥水化动力学模型与试验方法研究进展[J]. 硅酸盐学报, 2022, 50(6): 1728-1761. ZHAO K Y, ZHANG P, KONG X M, et al. Recent progress on Portland cement hydration kinetic models and experimental methods[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1728-1761 (in Chinese). [27] 褚会超, 吕宪俊, 张 燕, 等. 降低泡沫混凝土吸水率的研究现状及展望[J]. 硅酸盐通报, 2016, 35(9): 2852-2859. CHU H C, LYU X J, ZHANG Y, et al. Status and prospects of research on reducing the water absorption of foamed concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9): 2852-2859 (in Chinese). [28] 牛云辉, 蒋 俊, 张玉苹, 等. 自流平泡沫混凝土流动性能影响研究[J]. 混凝土与水泥制品, 2016(11): 65-68. NIU Y H, JIANG J, ZHANG Y P, et al. Influence research on fluidity of self-leveling foam concrete[J]. China Concrete and Cement Products, 2016(11): 65-68 (in Chinese). |