[1] TANG Q, LI L Y, ZHANG S, et al. Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area[J]. Journal of Geochemical Exploration, 2018, 186: 1-11. [2] BIAN Z F, MIAO X X, LEI S G, et al. The challenges of reusing mining and mineral-processing wastes[J]. Science, 2012, 337(6095): 702-703. [3] 李佳鑫, 舒志乐, 孙启明, 等. 不同活化方式对煤矸石胶砂力学性能的影响研究[J]. 材料导报, 2022, 36(增刊2): 244-249. LI J X, SHU Z L, SUN Q M, et al. Research on mechanical properties of coal gangue mortar with different activation of coal cangue[J]. Materials Reports, 2022, 36(supplement 2): 244-249 (in Chinese). [4] 杜雪虹, 刘芳池, 李向东. 煤矸石淋溶液重金属释放规律与生物毒性研究[J]. 煤炭科学技术, 2022, 50(10): 259-268. DU X H, LIU F C, LI X D. Study on release law and biological toxicity of heavy metals in coal gangue leaching solution[J]. Coal Science and Technology, 2022, 50(10): 259-268 (in Chinese). [5] ALI-TASALLOTI S M, INDRARATNA B, CHIARO G, et al. Field investigation on compaction and strength performance of two coal wash-BOS slag mixtures[C]//IFCEE 2015. San Antonio, Texas. Reston, VA: American Society of Civil Engineers, 2015: 2359-2368. [6] DU X J, FENG G R, QI T Y, et al. Failure characteristics of large unconfined cemented gangue backfill structure in partial backfill mining[J]. Construction and Building Materials, 2019, 194: 257-265. [7] DONG Z C, XIA J W, FAN C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction and Building Materials, 2015, 100: 63-69. [8] WANG C L, NI W, ZHANG S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials, 2016, 104: 109-115. [9] 白国良, 朱 超, 王建文, 等. 煤矸石混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2020, 41(12): 49-55. BAI G L, ZHU C, WANG J W, et al. Experimental study on shear behavior of coal gangue concrete beams[J]. Journal of Building Structures, 2020, 41(12): 49-55 (in Chinese). [10] 刘瀚卿. 煤矸石混凝土柱承载力试验研究[D]. 西安: 西安建筑科技大学, 2019. LIU H Q. Experimental study on bearing capacity of coal gangue concrete column[D]. Xi'an: Xi'an University of Architecture and Technology, 2019 (in Chinese). [11] BAI G L, ZHU C, LIU C, et al. An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties[J]. Construction and Building Materials, 2020, 240: 117978. [12] 刘瀚卿, 白国良, 王建文, 等. 煤矸石混凝土单轴受压应力-应变曲线试验研究[J]. 建筑结构学报, 2023, 44(7): 236-245+254. LIU H Q, BAI G L, WANG J W, et al. Experimental study on stress-strain curve of coal gangue concrete under uniaxial compressive [J]. Journal of Building Structures, 2023, 44(7): 236-245+254 (in Chinese). [13] 李庆文, 胡露露, 曹 行, 等. CFRP布均匀约束煤圆柱轴压性能[J]. 复合材料学报, 2022, 39(11): 5611-5624. LI Q W, HU L L, CAO H, et al. Axial compressive behavior of CFRP uniformly wrapped coal in circular columns[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5611-5624 (in Chinese). [14] 李庆文, 曾杏钢, 张向东, 等. 碳纤维布层数对煤圆柱力学特性影响的细观研究[J/OL]. 煤炭科学技术: 1-13 [2023-04-19]. http://kns.cnki.net/kcms/detail/11.2402.TD.20220826.1739.009.html. LI Q W, ZENG X G, ZHANG X D, et al. Mesoscopic study on the effect of CFRP layers on the mechanical properties of coal circular-columns[J/OL]. Coal Science and Technology: 1-13 [2023-04-19]. http://kns.cnki.net/kcms/detail/11.2402.TD.20220826.1739.009.html (in Chinese). [15] 杨俊龙, 王吉忠, 卢世伟, 等. FRP非均匀约束海水海砂混凝土方柱轴压性能[J]. 复合材料学报, 2022, 39(6): 2801-2809 YANG J L, WANG J Z, LU S W, et al. Axial compressive behavior of FRP nonuniformly wrapped seawater sea-sand concrete in square columns[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2801-2809 (in Chinese). [16] 柏佳文, 魏 洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9): 3076-3085. BAI J W, WEI Y, ZHANG Y R, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3076-3085 (in Chinese). [17] ZHAO H C, REN T, REMENNIKOV A. Behaviour of FRP-confined coal reject concrete columns under axial compression[J]. Composite Structures, 2021, 262: 113621. [18] ZHAO H C, REN T, REMENNIKOV A. Behaviour of FRP-confined coal rejects based backfill material under compression[J]. Construction and Building Materials, 2021, 268: 121171. [19] LAM L, TENG J G. Ultimate condition of fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2004, 8(6): 539-548. [20] WU G, LÜ Z T, WU Z S. Strength and ductility of concrete cylinders confined with FRP composites[J]. Construction and Building Materials, 2006, 20(3): 134-148. [21] ALI O. Structural reliability of biaxial loaded short/slender-square FRP-confined RC columns[J]. Construction and Building Materials, 2017, 151: 370-382. [22] ZENG J J, CHEN S P, ZHUGE Y, et al. Three-dimensional finite element modeling and theoretical analysis of concrete confined with FRP rings[J]. Engineering Structures, 2021, 234: 111966. [23] 石 崇, 张 强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018. SHI C, ZHANG Q, WANG S N. Numerical simulation techniques and applications of granular flow(PFC5.0)[M]. Beijing: China Construction Industry Press, 2018 (in Chinese). [24] HE P F, KULATILAKE P H S W, YANG X X, et al. Detailed comparison of nine intact rock failure criteria using polyaxial intact coal strength data obtained through PFC3D simulations[J]. Acta Geotechnica, 2018, 13(2): 419-445. [25] ZHAO Y F, KONIETZKY H, HERBST M. Damage evolution of coal with inclusions under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2021, 54(10): 5319-5336. [26] 王 刚, 王 锐, 武猛猛, 等. 渗透压-应力耦合作用下煤体常规三轴试验的颗粒流模拟[J]. 岩土力学, 2016, 37(增刊1): 537-546. WANG G, WANG R, WU M M, et al. Simulation of conventional triaxial test on coal under hydro-mechanical coupling by particle flow code[J]. Rock and Soil Mechanics, 2016, 37(supplement 1): 537-546 (in Chinese). [27] 谭 鑫, 曹 明, 冯龙健, 等. 土工织物包裹碎石桩力学特性的数值模拟研究[J]. 中国公路学报, 2020, 33(9): 136-145. TAN X, CAO M, FENG L J, et al. Numerical study on mechanical behaviors of geotextile-wrapped stone column[J]. China Journal of Highway and Transport, 2020, 33(9): 136-145 (in Chinese). [28] 郭润兰, 范雅琼, 王广书, 等. 基于PFC3D的机床床身用树脂矿物复合材料损伤性能细观研究[J]. 复合材料学报, 2022, 39(2): 834-844. GUO R L, FAN Y Q, WANG G S, et al. Meso-scale study on damage performance of resin mineral composite material for machine tool bed based on PFC3D[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 834-844 (in Chinese). [29] 王 涛, 韩 煊, 赵先宇, 等. FLAC3D数值模拟方法及工程应用[M]. 北京: 中国建筑工业出版社, 2015. WANG T. Numerical simulation methods and engineering applications based on FLAC3D[M]. Beijing: China Construction Industry Press, 2015 (in Chinese). [30] 田会文, 周 臻, 陆纪平, 等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报, 2020, 37(7): 1629-1638 TIAN H W, ZHOU Z, LU J P, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638 (in Chinese). [31] TAN X, HU Z B, CHEN C F, et al. 3D DEM-FDM coupled analysis of the behavior of an isolated geogrid-encased stone column under axial loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(6): 04021028. [32] 王桂林, 张 亮, 许 明, 等. 单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究[J]. 岩土工程学报, 2019, 41(4): 639-647. WANG G L, ZHANG L, XU M, et al. Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 639-647 (in Chinese). [33] 刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征[J]. 高压物理学报, 2021, 35(2): 42-51. LIU P F, FAN J Q, GUO J Q, et al. Damage and energy evolution characteristics of granite under triaxial stress[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 42-51 (in Chinese). [34] 尹升华, 侯永强, 杨世兴, 等. 单轴压缩下混合集料胶结充填体变形破坏及能耗特征分析[J]. 中南大学学报(自然科学版), 2021, 52(3): 936-947. YIN S H, HOU Y Q, YANG S X, et al. Analysis of deformation failure and energy dissipation of mixed aggregate cemented backfill during uniaxial compression[J]. Journal of Central South University (Science and Technology), 2021, 52(3): 936-947 (in Chinese). [35] LI P, CAI M F. Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression[J]. Journal of Central South University, 2021, 28(6): 1857-1874. [36] 张 亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制[J]. 中国公路学报, 2021, 34(1): 24-34. ZHANG L, WANG G L, LEI R D, et al. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression[J]. China Journal of Highway and Transport, 2021, 34(1): 24-34 (in Chinese). [37] 李庆文, 高森林, 胡露露, 等. 不同加载速率下非均质煤样能量耗散损伤本构关系[J].煤炭学报, 2022, 47(增刊1): 90-102. LI Q W, GAO S L, HU L L, et al. Constitutive relation of energy dissipation damage of heterogeneous coal samples under different loading rates[J]. Journal of China Coal Society, 2022, 47(supplement 1): 90-102 (in Chinese). [38] 周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(8): 2005-2014. ZHOU H Y, JIA K C, WANG X J, et al. In-plane compression properties of negative Poisson’s ratio sandwich structure filled with foam concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005-2014 (in Chinese). [39] 姜士鸿, 王成强, 金 辉, 等. 缠绕式圆筒蜂窝的结构参数对吸能特性影响研究[J]. 机械强度, 2022, 44(2): 485-490. JIANG S H, WANG C Q, JIN H, et al. Study on the influence of the structure parameters of the wound cylindrical honeycomb on the energy absorption characteristics[J]. Journal of Mechanical Strength, 2022, 44(2): 485-490 (in Chinese). [40] 王小娟, 刘 路, 贾昆程, 等. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报, 2021, 24(1): 207-215. WANG X J, LIU L, JIA K C, et al. Mechanical properties and energy absorption characteristics of ceramsite foam concrete[J]. Journal of Building Materials, 2021, 24(1): 207-215 (in Chinese). [41] 刘 欢. 泡沫铝材料的吸能与防爆特性研究[D]. 沈阳: 东北大学, 2014. LIU H. Study on energy absorption and explosion-proof characteristics of foamed aluminum materials[D]. Shenyang: Northeastern University, 2014 (in Chinese). [42] 周宏元, 于鸿鑫, 王小娟, 等. 玄武岩纤维平纹织物约束建筑固体废弃物颗粒力学性能及吸能特性[J]. 复合材料学报, 2022, 39(2): 695-706. ZHOU H Y, YU H X, WANG X J, et al. Mechanical properties and energy absorption characteristics of basalt fiber plain woven fabric constrained building solid waste particles[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 695-706 (in Chinese). [43] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585. WANG X J, CUI H R, ZHOU H Y, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585 (in Chinese). [44] 周宏元, 樊家乐, 王小娟, 等. 填充泡沫混凝土铝管组合挂板的吸能性能[J]. 复合材料学报: 2023, 40(5): 2860-2871. ZHOU H Y, FAN J L, WANG X J, et al. Energy absorption of foam concrete aluminum tube composite cladding[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2860-2871 (in Chinese). [45] MILTZ J, GRUENBAUM G. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering and Science, 1981, 21(15): 1010-1014. [46] 周宏元, 王业斌, 王小娟, 等. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082+18095. ZHOU H Y, WANG Y B, WANG X J, et al. Size effect of foam concrete subjected to quasi-static compression[J]. Materials Review, 2021, 35(18): 18076-18082+18095 (in Chinese). [47] 徐佳佳, 方 海, 韩 娟, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性[J]. 复合材料学报, 2022, 39(8): 3965-3981. XU J J, FANG H, HAN J, et al. Energy absorption behavior of foam-filled sandwich composite materials reinforced by lattice webs under quasi-static compression[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3965-3981 (in Chinese). |