[1] SALA E, ZANOTTI C, PASSONI C, et al. Lightweight natural lime composites for rehabilitation of Historical Heritage[J]. Construction and Building Materials, 2016, 125: 81-93. [2] NIKHIL K D, RATHISH K P. Investigations on alternate lime-pozzolana based mortars for repair of heritage structures[J]. Construction and Building Materials, 2022, 341: 127776. [3] 兰明章, 聂 松, 王剑锋等. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516. LAN M Z, NIE S, WANG J F, et al. A state-of-the-art review on lime-based mortars for restoration of ancient buildings[J]. Materials Reports, 2019, 33(9): 1512-1516 (in Chinese). [4] ZHANG Z J, LIU J B, LI B, et al. Experimental study on factors affecting the physical and mechanical properties of shell lime mortar[J]. Construction and Building Materials, 2019, 228: 116726. [5] WANG J, KONG X M, YIN J H, et al. Impacts of two alkanolamines on crystallization and morphology of calcium hydroxide[J]. Cement and Concrete Research, 2020, 138: 106250. [6] 刘 越, 郑 强, 邢佳斌等. 石灰石干法制备高性能氢氧化钙的工艺及应用研究[J/OL]. 无机盐工业: 1-13 [2023-06-06]. https://doi.org/10.19964/j.issn.1006-4990.2022-0712. LIU Y, ZHENG Q, XING J B, et al. Study on the process and application of high performance calcium hydroxide prepared by limestone dry method[J/OL]. Inorganic Salt Industry: 1-13 [2023-06-06]. https://doi.org/10.19964/j.issn.1006-4990.2022-0712 (in Chinese). [7] 郝志飞, 张印民, 张永锋, 等. 湿法改性制备高比表面积氢氧化钙及表征[J]. 无机盐工业, 2015, 47(12): 19-21. HAO Z F, ZHANG Y M, ZHANG Y F, et al. Wet modified preparation and characterization of calcium hydroxide with high specific surface area[J]. Inorganic Chemicals Industry, 2015, 47(12): 19-21 (in Chinese). [8] RODRIGUEZ N C, RUIZ A E, ORTEGA H M, et al. Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(24): 10948-10957. [9] 魏国锋, 张秉坚, 方世强, 等. “二次生石灰”的微结构及作为文物加固剂的应用研究[J]. 西安建筑科技大学学报(自然科学版), 2011, 43(4): 588-593. WEI G F, ZHANG B J, FANG S Q, et al. Microstructure and application study of secondary calcined lime as consolidant for cultural relics[J]. Journal of Xi'an University of Architecture & Technology, 2011, 43(4): 588-593 (in Chinese). [10] THEODORIDOU M, CHARALAMBOUS E, MARAVELAKI K P, et al. Amelioration of crushed brick-lime composites using nano-additives[J]. Cement and Concrete Composites, 2016, 68: 77-87. [11] 梁 波, 王菊琳. 负载纳米SiO2的火山灰对传统石灰的改性[J]. 科学技术与工程, 2019, 19(35): 322-327. LIANG B, WANG J L. Modification of traditional lime by volcanic ash loaded with nano-SiO2[J]. Science Technology and Engineering, 2019, 19(35): 322-327 (in Chinese). [12] 魏国锋, 张秉坚, 方世强. 添加剂对传统糯米灰浆性能的影响及其机理[J]. 土木建筑与环境工程, 2011, 33(5): 143-149. WEI G F, ZHANG B J, FANG S Q. Influence of admixtures on properties of traditional sticky rice-lime mortar and their mechanisms[J]. Journal of Chongqing Jianzhu University, 2011, 33(5): 143-149 (in Chinese). [13] 谌文武, 张起勇, 刘宏伟, 等. 糯米浆温度对糯米灰浆加固遗址土的影响[J]. 岩石力学与工程学报, 2017, 36(增刊2): 4244-4250. CHEN W W, ZHANG Q Y, LIU H W, et al. Influence of temperature on glutinous rice slurry strengthening site soil by sticky rice-lime mortar[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(supplement 2): 4244-4250 (in Chinese). [14] 曹泽杰, 陆建鸿, 张运华. 高强预糊化糯米灰浆制备与力学性能提升机制[J]. 硅酸盐学报, 2022, 50(8): 2119-2128. CAO Z J, LU J H, ZHANG Y H. Preparation and mechanical properties improvement mechanism of high strength pregelatinized sticky rice-lime mortar[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2119-2128 (in Chinese). [15] 赵 鹏, 李广燕, 张云升. 桐油-石灰传统灰浆的性能与作用机理[J]. 硅酸盐学报, 2013, 41(8): 1105-1110. ZHAO P, LI G Y, ZHANG Y S. Properties and mechanism of tung oil-lime traditional mortar[J]. Journal of the Chinese Ceramic Society, 2013, 41(8): 1105-1110 (in Chinese). [16] 闫强强, 王社良, 吴 卓, 等. 偏高岭土增强传统糯米-石灰浆力学性能及耐久性试验研究[J]. 混凝土, 2021(12): 113-116. YAN Q Q, WANG S L, WU Z, et al. Experimental study on the mechanical properties and durability of traditional glutinous rice-lime slurry enhanced by metakaolin[J]. Concrete, 2021(12): 113-116 (in Chinese). [17] 朱绘美, 徐德龙, 刘文欢. 古建筑修复用熟石灰性能优化及机理研究[J]. 建筑材料学报, 2017, 20(6): 902-908. ZHU H M, XU D L, LIU W H. Properties optimization of hydrated lime used in ancient building restoration and its mechanism[J]. Journal of Building Materials, 2017, 20(6): 902-908 (in Chinese). [18] GARIJO L, ZHANG X X, RUIZ G, et al. Age effect on the mechanical properties of natural hydraulic and aerial lime mortars[J]. Construction and Building Materials, 2020, 236: 117573. [19] 张 典, 王 辉, 陈绍华, 等. 古建筑修缮中粉化石灰的占比对灰浆性能的影响[J]. 材料导报, 2023(10): 1-12. ZHANG D, WANG H, CHEN S H, et al. Influence of the ratio of chalked lime on the performance of pastes in the restoration of ancient buildings[J]. Materials Reports, 2023(10): 1-12 (in Chinese). [20] BOHÁČM, NEČAS R. The role of aging on rheological properties of lime putty[J]. Procedia Engineering, 2016, 151: 34-41. [21] MASCOLO G, MASCOLO M C, VITALE A, et al. Microstructure evolution of lime putty upon aging[J]. Journal of Crystal Growth, 2010, 312(16/17): 2363-2368. [22] 魏国锋, 张秉坚, 方世强. 石灰陈化机理及其在文物保护中的应用研究[J]. 建筑材料学报, 2012, 15(1): 96-102. WEI G F, ZHANG B J, FANG S Q. Aging mechanism of quicklime and application study of aged lime in conservation of cultural relics[J]. Journal of Building Materials, 2012, 15(1): 96-102 (in Chinese). [23] 谷 丽, 刘润静, 郭志伟. 石灰消化条件对氢氧化钙活性的影响[J]. 中国粉体技术, 2012, 18(4): 62-65+69. GU L, LIU R J, GUO Z W. Effect of lime slaking conditions on activity of calcium hydroxide[J]. China Powder Science and Technology, 2012, 18(4): 62-65+69 (in Chinese). [24] MARTÍNEZ G C, GONZÁLEZ F B, CARRO L D, et al. Carbonation evolution of lime putty coatings with mussel shell aggregate[J]. Construction and Building Materials, 2020, 264: 120165. [25] 郝素菊, 任倩倩, 张玉柱, 等. 石灰的活性度及微观结构研究[J]. 过程工程学报, 2017, 17(1): 151-155. HAO S J, REN Q Q, ZHANG Y Z, et al. Study on the activity and microstructure of lime[J]. The Chinese Journal of Process Engineering, 2017, 17(1): 151-155 (in Chinese). [26] 单思寒, 张瑞峰, 王 琴, 等. 北京延庆和怀柔明代长城灰浆微结构剖析对比研究[J]. 硅酸盐通报, 2022, 41(9): 3047-3058. SHAN S H, ZHANG R F, WANG Q, et al. Structural analysis and comparison of the Ming dynasty great wall mortar in Beijing Yanqing and Huairou[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3047-3058 (in Chinese). [27] 齐国栋, 王栋民, 朱宇华, 等. 明长城大庄科段古灰浆成分分析及性能演变[J]. 硅酸盐学报, 2022, 50(8): 2163-2172. QI G D, WANG D M, ZHU Y H, et al. Composition and performance evolution of the Ming great wall ancient mortar in dazhuangke of great wall built at Ming dynasty[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2163-2172 (in Chinese). [28] ZENG Y Y, ZHANG B J, LIANG X L. A case study and mechanism investigation of typical mortars used on ancient architecture in China[J]. Thermochimica Acta, 2008, 473(1/2): 1-6. [29] 苏少龙, 曲晓龙, 钟读乐, 等. 工业氢氧化钙中氧化钙、氢氧化钙及碳酸钙测定方法的研究[J]. 无机盐工业, 2020, 52(5): 75-77. SU S L, QU X L, ZHONG D L, et al. Study on determination of CaO, Ca(OH)2 and CaCO3 in industrial calcium hydroxide[J]. Inorganic Chemicals Industry, 2020, 52(5): 75-77 (in Chinese). [30] BASQUIROTO DE SOUZA F, YAO X P, LIN J L, et al. Effective strategies to realize high-performance graphene-reinforced cement composites[J]. Construction and Building Materials, 2022, 324: 126636. [31] DE SILVA P, BUCEA L, MOOREHEAD D R, et al. Carbonate binders: reaction kinetics, strength and microstructure[J]. Cement and Concrete Composites, 2006, 28(7): 613-620. [32] 张秉坚, 方世强, 李佳佳. 中国传统复合灰浆[M]. 北京: 中国建材工业出版社, 2020. ZHANG B J, FANG S Q, LI J J. Chinese traditional composite mortar[M]. Beijing: China Building Materials Industry Press, 2020 (in Chinese). |