[1] 李东林. 聚合物改性高强水泥基材料的性能与机理[D]. 重庆: 重庆大学, 2013. LI D L. Properties and mechanism of polymer modified high strength cement-based materials[D]. Chongqing: Chongqing University, 2013 (in Chinese). [2] 李 彬, 王 玲. 聚羧酸减水剂抗泥性的研究进展[J]. 硅酸盐学报, 2020, 48(11): 1852-1858. LI B, WANG L. Research progress on clay tolerance of polycarboxylate superplasticizer[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1852-1858 (in Chinese). [3] 沙胜男, 史才军, 向顺成, 等. 聚羧酸减水剂的合成技术研究进展[J]. 材料导报, 2019, 33(3): 558-568. SHA S N, SHI C J, XIANG S C, et al. The state-of-the-art synthesis techniques of polycarboxylate superplasticizer[J]. Materials Review, 2019, 33(3): 558-568 (in Chinese). [4] 耿长圣, 王 霞, 倪小飞, 等. 浅析砂含泥量对混凝土性能的影响[C]//2009中国商品混凝土可持续发展论坛暨第六届全国商品混凝土技术与管理交流大会论文集, 2009: 4. GENG C S, WANG X, NI X F, et al. Analysis on the influences of sand silt content on concrete performance[C]//Proceedings of the 2009 China Commercial Concrete Sustainable Development Forum and the 6th National Commercial Concrete Technology and Management Exchange Conference, 2009: 4 (in Chinese). [5] ABOUZEID M N. Short-term impact of high-aggregate fines content on concrete incorporating water-reducing admixtures[J]. ACI Materials Journal, 2003, 100(4): 280-285. [6] MA Y H, SHI C J, LEI L, et al. Research progress on polycarboxylate based superplasticizers with tolerance to clays: a review[J]. Construction and Building Materials, 2020, 255: 119386. [7] XU H J, SUN S M, WEI J X, et al. β-cyclodextrin as pendant groups of a polycarboxylate superplasticizer for enhancing clay tolerance[J]. Industrial & Engineering Chemistry Research, 2015, 54(37): 9081-9088. [8] MATTHIAS W, LEI L. Influence of side chain length of MPEG-based polycarboxylate superplasticizers on their resistance towards intercalation into clay structures[J]. Construction and Building Materials, 2021, 281: 122621. [9] STECHER J, PLANK J. Novel concrete superplasticizers based on phosphate esters[J]. Cement and Concrete Research, 2019, 119: 36-43. [10] TANG X D, ZHAO C L, YANG Y Q, et al. Amphoteric polycarboxylate superplasticizers with enhanced clay tolerance: preparation, performance and mechanism[J]. Construction and Building Materials, 2020, 252: 119052. [11] 解利荣, 张光华, 董 勋, 等. 不同磷酸酯单体的EPEG型聚羧酸减水剂的制备及抗泥性能[J]. 精细化工, 2022, 39(11): 2371-2376. XIE L R, ZHANG G H, DONG X, et al. Preparation and anti-mud function of EPEG polycarboxylate superplasticizers with different phosphate monomers[J]. Fine Chemicals, 2022, 39(11): 2371-2376 (in Chinese). [12] 张光华, 王 爽, 张 策, 等. 双子季铵盐对聚羧酸减水剂抗泥性能的影响[J]. 硅酸盐学报, 2019, 47(2): 178-183. ZHANG G H, WANG S, ZHANG C, et al. Effect of gemini quaternary ammonium salt on anti-clay properties of polycarboxylate water reducing agent[J]. Journal of the Chinese Ceramic Society, 2019, 47(2): 178-183 (in Chinese). [13] HE D, LIANG R, ZHAO J, et al. Effect of ionic liquids in compatibility with PCE and cement paste containing clay[J]. Construction and Building Materials, 2020, 264: 120265. [14] 杜凯峰, 汪兴兴, 倪红军, 等. 以含铝资源制备聚合氯化铝及其工艺研究进展[J]. 现代化工, 2018, 38(8): 48-51+53. DU K F, WANG X X, NI H J, et al. Research progress in preparation of polyaluminum chloride by aluminum resources[J]. Modern Chemical Industry, 2018, 38(8): 48-51+53 (in Chinese). [15] 桂中明. 聚合氯化铝生产和应用技术研究进展[J]. 精细与专用化学品, 2021, 29(4): 42-45. GUI Z M. Research progress in production and application technology of polyaluminium chloride[J]. Fine and Specialty Chemicals, 2021, 29(4): 42-45 (in Chinese). [16] 高桂梅. 聚合氯化铝(PAC)的絮凝作用在污水处理中的应用研究[J]. 广州化工, 2016, 44(5): 129-130+151. GAO G M. Application study of flocculating effect of polyaluminium chloride in sewage disposal[J]. Guangzhou Chemical Industry, 2016, 44(5): 129-130+151 (in Chinese). [17] 武林香. 聚合氯化铝的絮凝作用在污水处理中的应用[J]. 山西化工, 2019, 39(3): 218-219+222. WU L X. Application of flocculation of polyaluminum chloride in sewage treatment[J]. Shanxi Chemical Industry, 2019, 39(3): 218-219+222 (in Chinese). [18] 王志学, 祖庆贺, 臧 军. 聚合氯化铝对混凝土工作性能的不良影响[J]. 商品混凝土, 2015(9): 69+34. WANG Z X, ZU Q H, ZANG J. Adverse effects of polyaluminum chloride on the workability of concrete [J]. Ready-Mixed Concrete, 2015(9): 69+34 (in Chinese). [19] 康春阳, 李 博, 田 健. 聚合氯化铝提升矿渣硅酸盐水泥性能及微观机理研究[J]. 硅酸盐通报, 2018, 37(9): 2693-2698. KANG C Y, LI B, TIAN J. Effect of polymeric aluminum chloride on the properties and microstructure of Portland cement-slag mortar[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2693-2698 (in Chinese). [20] 陈 伟, 唐焱杰, 田 健, 等. 聚合铝改性磷石膏基超硫矿渣胶凝材料制备与性能研究[J]. 武汉理工大学学报, 2016, 38(2): 1-6. CHEN W, TANG Y J, TIAN J, et al. Research on preparation and performance of poly-Al enhanced phosphorus gypsum based super-sulphated cement[J]. Journal of Wuhan University of Technology, 2016, 38(2): 1-6 (in Chinese). [21] 赵 苏, 于 渤, 夏义兵. 减水剂在水泥-水界面的吸附现象[J]. 沈阳建筑大学学报(自然科学版), 2010, 26(4): 724-728. ZHAO S, YU B, XIA Y B. Adsorption phenomenon of superplasticizer on the cement-water interface[J]. Journal of Shenyang Jianzhu University Natural Science, 2010, 26(4): 724-728 (in Chinese). [22] 李占兵, 李会泉, 刘青青, 等. 铝灰基聚合氯化铝处理选煤废水试验[J]. 洁净煤技术, 2022, 28(12): 143-148. LI Z B, LI H Q, LIU Q Q, et al. Treatment of coal washing waste water by aluminum dross-based poly aluminum chloride[J]. Clean Coal Technology, 2022, 28(12): 143-148 (in Chinese). [23] 廖国胜, 何正恋, 刘 佩. 粘土矿物成分对聚羧酸减水剂吸附性能的研究[J]. 硅酸盐通报, 2015, 34(1): 227-231. LIAO G S, HE Z L, LIU P. Mechanism research of clay mineral composition on the adsorption performance of ploycarboxylate superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(1): 227-231 (in Chinese). [24] 符惠玲, 仲以林, 蔡冠杰, 等. 不同黏土矿物对减水剂性能的影响[J]. 混凝土, 2019(5): 77-80. FU H L, ZHONG Y L, CAI G J, et al. Effects of different clay minerals on the properties of water reducer[J]. Concrete, 2019(5): 77-80 (in Chinese). [25] 张翠珍, 唐新德, 陈晓东, 等. 聚羧酸减水剂的粘土耐受性研究进展[J]. 材料导报, 2022, 36(增刊2): 495-499. ZHANG C Z, TANG X D, CHEN X D, et al. Progress on the clay tolerance of polycarboxylate superplasticizers[J]. Materials Reports, 2022, 36(supplement 2): 495-499 (in Chinese). [26] 王子明, 吴 昊, 徐 莹, 等. 黏土对聚羧酸减水剂应用性能的抑制机理[J]. 建筑材料学报, 2014, 17(2): 234-238+279. WANG Z M, WU H, XU Y, et al. Inhibition mechanism of clays on applying performances of polycarboxylate superplasticizer[J]. Journal of Building Materials, 2014, 17(2): 234-238+279 (in Chinese). [27] NG S, PLANK J. Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers[J]. Cement and Concrete Research, 2012, 42(6): 847-854. [28] 田 润, 张永兴, 周 晟, 等. 抗泥敏感性聚羧酸减水剂的研究进展[J]. 高分子材料科学与工程, 2020, 36(11): 175-182+190. TIAN R, ZHANG Y X, ZHOU S, et al. Progress of clay tolerance type polycarboxylic superplasticizers[J]. Polymer Materials Science & Engineering, 2020, 36(11): 175-182+190 (in Chinese). [29] AIT-AKBOUR R, BOUSTINGORRY P, LEROUX F, et al. Adsorption of polycarboxylate poly(ethylene glycol) (PCP) esters on montmorillonite (Mmt): effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure[J]. Journal of Colloid and Interface Science, 2015, 437: 227-234. |