[1] 白羿雄, 姚晓华, 姚有华, 等. 青稞抗倒伏性状的基因型差异[J]. 中国农业科学, 2019, 52(2): 228-238. BAI Y X, YAO X H, YAO Y H, et al. Difference of traits relating to lodging resistance in hulless barley genotypes[J]. Scientia Agricultura Sinica, 2019, 52(2): 228-238 (in Chinese). [2] 刘国一, 普布贵吉, 甘雅文, 等. 2010—2019年西藏粮食增产的贡献因素[J]. 应用与环境生物学报, 2022, 28(4): 931-934. LIU G Y, PU B, GAN Y W, et al. Contributing factors of grain production in Tibet from 2010 to 2019[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 931-934 (in Chinese). [3] 李海朝, 徐贵钰, 汪 航. 青稞秸秆化学成分及纤维形态研究[J]. 生物质化学工程, 2010, 44(2): 40-42. LI H C, XU G Y, WANG H. Study on chemical components and fiber morphology of highland barley stalk[J]. Biomass Chemical Engineering, 2010, 44(2): 40-42 (in Chinese). [4] OBADI M, QI Y J, XU B. Highland barley starch (Qingke): structures, properties, modifications, and applications[J]. International Journal of Biological Macromolecules, 2021, 185: 725-738. [5] ZHANG T W, WANG Q, LI J R, et al. Study on the origin traceability of Tibet highland barley (Hordeum vulgare L. ) based on its nutrients and mineral elements[J]. Food Chemistry, 2021, 346: 128928. [6] 刘振正, 谢春磊, 王学营, 等. 稻壳灰的制备及其对地聚物力学性能的影响[J]. 硅酸盐通报, 2020, 39(12): 3881-3888. LIU Z Z, XIE C L, WANG X Y, et al. Preparation of rice husk ash and its effect on mechanical properties of geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3881-3888 (in Chinese). [7] ZHANG Q, LI Y Z, XU L, et al. Bond strength and corrosion behavior of rebar embedded in straw ash concrete[J]. Construction and Building Materials, 2019, 205: 21-30. [8] AKSOAN O, BINICI H, ORTLEK E. Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes[J]. Construction and Building Materials, 2016, 106: 253-263. [9] 曹 锋, 谭 镇, 乔宏霞, 等. 青稞秸秆灰掺入氯氧镁水泥中的活性与作用机理[J]. 功能材料, 2021, 52(12): 12196-12202+12209. CAO F, TAN Z, QIAO H X, et al. Activityand mechanism of highland barley straw ash added into magnesium oxychloride cement[J]. Journal of Functional Materials, 2021, 52(12): 12196-12202+12209 (in Chinese). [10] 曹 锋, 乔宏霞, 王鹏辉, 等. 新型活性混合材料青稞秸秆灰的制备及性能[J]. 工程科学与技术, 2022, 54(4): 155-163. CAO F, QIAO H X, WANG P H, et al. Preparation and properties of highland barley straw ash as new active mixed materials[J]. Advanced Engineering Sciences, 2022, 54(4): 155-163 (in Chinese). [11] CAO F, QIAO H X, SHU X Y, et al. Potential application of highland barley straw ash as a new active admixture in magnesium oxychloride cement[J]. Journal of Building Engineering, 2022, 59: 105108. [12] 董致宏, 席 迅, 郭奇峰, 等. 裂隙巷道围岩采深-强度响应面模型研究[J]. 华中科技大学学报(自然科学版), 2022, 50(5): 89-94. DONG Z H, XI X, GUO Q F, et al. Study on mining depth-strength response surface model of surrounding rock in fractured roadway[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(5): 89-94 (in Chinese). [13] 刘树龙, 李公成, 刘国磊, 等. 基于响应面法的矿渣基全固废胶凝材料配比优化[J]. 硅酸盐通报, 2021, 40(1): 187-193. LIU S L, LI G C, LIU G L, et al. Ratio optimization of slag-based solid waste cementitious material based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 187-193 (in Chinese). [14] 白晓伟, 刘德明, 张伶伶, 等. 基于响应面的全民健身中心自然通风性能优化研究[J]. 工业建筑, 2020, 50(3): 51-57. BAI X W, LIU D M, ZHANG L L, et al. Research on optimization of natural ventilation performance of national fitness center buildings based on response surface[J]. Industrial Construction, 2020, 50(3): 51-57 (in Chinese). [15] MA S Y. Measurement and evaluation of economic benefits of marine industry: a grey correlation-based analysis[J]. Journal of Coastal Research, 2020, 106(supplement 1): 77. [16] 刘 芳, 尤占平, 熊 锐. 干湿循环-硫酸盐耦合作用下混凝土相对动弹模灰熵关联度分析[J]. 硅酸盐通报, 2018, 37(2): 660-665+681. LIU F, YOU Z P, XIONG R. Gray entropy correlation analysis of relative dynamic elastic modulus for concrete under drying-wetting cycles and sulfate attack[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(2): 660-665+681 (in Chinese). |