硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (6): 2150-2160.
所属专题: 陶瓷
周远恒, 陈才俊, 葛军显, 王佳新, 魏瑞勇, 邢占文
收稿日期:
2023-03-24
修订日期:
2023-03-24
出版日期:
2023-06-15
发布日期:
2023-06-25
通信作者:
邢占文,博士,副教授。E-mail:xingzhanwen@suda.edu.cn
作者简介:
周远恒(2003—),男。主要从事陶瓷增材制造技术与应用的研究。E-mail:3228507672@qq.com
基金资助:
ZHOU Yuanheng, CHEN Caijun, GE Junxian, WANG Jiaxin, WEI Ruiyong, XING Zhanwen
Received:
2023-03-24
Revised:
2023-03-24
Online:
2023-06-15
Published:
2023-06-25
摘要: 由龋病、牙周炎等疾病导致的牙齿缺失在我国十分常见,临床上主要采用口腔修复进行治疗。氧化锆凭借优异的力学性能、良好的生物相容性和好的美学表现成为齿科修复领域的理想修复材料。传统的计算机辅助设计(CAD)/计算机辅助制造(CAM)减材制造虽然加工精度高,边缘适合性好,但是存在材料浪费、刀具磨损和咬合面窝沟处制作精度不足等缺点。增材制造(3D打印)作为快速成型技术的典型代表,满足构建精准、个性化和复杂结构全瓷冠的基本要求,有望成为全瓷冠制备的潜在候选技术。本文综述了近年来国内外各研究团队在氧化锆全瓷冠光固化3D打印及应用的进展,对陶瓷浆料组成、打印过程支撑结构设计、打印参数优化、后处理工艺路线以及打印后产品性能的评价进行综述与分析,并辅以大量实例进行说明;最后指出氧化锆全瓷冠光固化3D打印领域未来将面临的挑战,并给出一定指导意见。
中图分类号:
周远恒, 陈才俊, 葛军显, 王佳新, 魏瑞勇, 邢占文. 氧化锆全瓷冠光固化3D打印研究进展[J]. 硅酸盐通报, 2023, 42(6): 2150-2160.
ZHOU Yuanheng, CHEN Caijun, GE Junxian, WANG Jiaxin, WEI Ruiyong, XING Zhanwen. Research Progress of Zirconia All-Ceramic Crowns via Stereolithography 3D Printing[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(6): 2150-2160.
[1] 李小倩. 基于MAM自由成形技术的ZrO2全瓷牙冠制备工艺研究[D]. 武汉: 华中科技大学, 2013. LI X Q. Reparation of ZrO2 All-ceramic crown based on MAM freeform fabracation[D]. Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese). [2] VAN N R. The future of dental devices is digital[J]. Dental Materials, 2012, 28(1): 3-12. [3] DENRY I, KELLY J R. Emerging ceramic-based materials for dentistry[J]. Journal of Dental Research, 2014, 93(12): 1235-1242. [4] 王思博, 王彤宇. 氧化锆基牙科材料性能参数及制备工艺的研究进展[J]. 材料研究与应用, 2022, 16(3): 495-504. WANG S B, WANG T Y. Research progress on performance parameters and preparation technology of zirconia-based dental materials[J]. Materials Research and Application, 2022, 16(3): 495-504 (in Chinese). [5] 吴晓红, 任小红, 周 凯. 二氧化锆全瓷冠在全冠口腔修复中的应用效果[J]. 实用临床医学, 2021, 22(6): 53-55+57. WU X H, REN X H, ZHOU K. Application of zirconium dioxide all-ceramic crown in full-crown restoration[J]. Practical Clinical Medicine, 2021, 22(6): 53-55+57 (in Chinese). [6] 张继伟. 二氧化锆全瓷冠修复在上前牙牙体缺损患者中的应用及安全性分析[J]. 实用中西医结合临床, 2022, 22(8): 72-74. ZHANG J W. Application and safety analysis of zirconia all-ceramic crown restoration in patients with upper anterior tooth defects[J]. Practical Clinical Journal of Integrated Traditional Chinese and Western Medicine, 2022, 22(8): 72-74 (in Chinese). [7] GALANTE R, FIGUEIREDO-PINA C G, SERRO A P. Additive manufacturing of ceramics for dental applications: a review[J]. Dental Materials, 2019, 35(6): 825-846. [8] KHANLAR L N, RIOS A S, TAHMASEB A, et al. Additive manufacturing of zirconia ceramic and its application in clinical dentistry: a review[J]. Dentistry Journal, 2021, 9(9): 104. [9] 刘 雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12. LIU Y, CHEN Z W. Research progress in photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering, 2020, 48(9): 1-12 (in Chinese). [10] 梁 栋, 何汝杰, 方岱宁. 陶瓷材料与结构增材制造技术研究现状[J]. 现代技术陶瓷, 2017, 38(4): 231-247. LIANG D, HE R J, FANG D N. Development of additive manufacturing of ceramics[J]. Advanced Ceramics, 2017, 38(4): 231-247 (in Chinese). [11] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. [12] 顾 玥, 王 功, 段文艳, 等. 陶瓷光固化成型技术的应用与展望[J]. 硅酸盐学报, 2021, 49(5): 867-877. GU Y, WANG G, DUAN W Y, et al. Application and prospect of photopolymerization technologies for ceramics[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 867-877 (in Chinese). [13] SUN J X, BINNER J, BAI J M. 3D printing of zirconia via digital light processing: optimization of slurry and debinding process[J]. Journal of the European Ceramic Society, 2020, 40(15): 5837-5844. [14] SNGER J C, PAUW B R, RIECHERS B, et al. Entering a new dimension in powder processing for advanced ceramics shaping[J]. Advanced Materials, 2023, 35(8): 2208653. [15] LI X B, ZHONG H, ZHANG J X, et al. Effect of powder characteristics on the rheological performance of resin-based zirconia suspension for stereolithography[J]. Journal of Inorganic Materials, 2019: 13. [16] 李 翔, 张秀香, 戴姣燕, 等. 粉体粒径对氧化锆陶瓷断裂韧性的影响[J]. 机械工程材料, 2016, 40(10): 75-78. LI X, ZHANG X X, DAI J Y, et al. Effect of powder size on fracture toughness of zirconia ceramics[J]. Materials for Mechanical Engineering, 2016, 40(10): 75-78 (in Chinese). [17] ZHANG K Q, XIE C, WANG G, et al. Photosensitive ZrO2 suspensions for stereolithography[J]. Ceramics International, 2019, 45(9): 12189-12195. [18] LIU K, ZHANG K, BOURELL D L, et al. Gelcasting of zirconia-based all-ceramic teeth combined with stereolithography[J]. Ceramics International, 2018, 44(17): 21556-21563. [19] HALLORAN J. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization[J]. Annual Review of Materials Research. 2016, 46(1): 19-40 [20] BADEV A, ABOULIATIM Y, CHARTIER T, et al. Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222(1): 117-122. [21] XING H Y, ZOU B, LIU X Y, et al. Effect of particle size distribution on the preparation of ZTA ceramic paste applying for stereolithography 3D printing[J]. Powder Technology, 2020, 359: 314-322. [22] LI W, ZHENG S H, MA S Y, et al. Study of surface modification of ZrO2/SiO2 nanocomposites with aluminum zirconium coupling agent[J]. Asian Journal of Chemistry, 2011, 23(2): 705-708. [23] SUN J X, BINNER J, BAI J M. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2019, 39(4): 1660-1667. [24] ZAKERI S, VIPPOLA M, LEVNEN E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35: 101177. [25] ZHANG K Q, HE R J, DING G J, et al. Digital light processing of 3Y-TZP strengthened ZrO2 ceramics[J]. Materials Science and Engineering: A, 2020, 774: 138768. [26] SONG S Y, PARK M S, LEE D, et al. Optimization and characterization of high-viscosity ZrO2 ceramic nanocomposite resins for supportless stereolithography[J]. Materials & Design, 2019, 180: 107960. [27] 李文利, 周宏志, 刘卫卫, 等. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50. LI W L, ZHOU H Z, LIU W W, et al. Research progress in ceramic slurries and rheology viaphotopolymerization-based 3D printing[J]. Journal of Materials Engineering, 2022, 50(7): 40-50 (in Chinese). [28] NIE J B, LI M S, LIU W W, et al. The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing[J]. Journal of the European Ceramic Society, 2021, 41(1): 646-654. [29] 张恒通, 牛 松, 林树东. 不同分子结构分散剂的研究进展[J]. 材料研究与应用, 2023, 17(1): 9-23. ZHANG H T, NIU S, LIN S D. Research progress of dispersants with different molecular structures[J]. Materials Research and Application, 2023, 17(1): 9-23 (in Chinese). [30] LI X B, ZHONG H, ZHANG J X, et al. Dispersion and properties of zirconia suspensions for stereolithography[J]. International Journal of Applied Ceramic Technology, 2020, 17(1): 239-247. [31] 韩卓群, 李 伶, 刘时浩, 等. 光固化ZrO2陶瓷料浆的流变性能研究[J]. 硅酸盐通报, 2021, 40(6): 1965-1971. HAN Z Q, LI L, LIU S H, et al. Research on rheological properties of stereolithography ZrO2 ceramic slurry[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1965-1971 (in Chinese). [32] 王亚宁, 张玉琪, 宋索成, 等. 氧化锆陶瓷扫描光固化成形与脱脂烧结工艺研究[J]. 无机材料学报, 2022, 37(3): 303-309. WANG Y N, ZHANG Y Q, SONG S C, et al. Laser stereolithography for zirconia ceramic fabrication and its debinding and sintering process[J]. Journal of Inorganic Materials, 2022, 37(3): 303-309 (in Chinese). [33] MENG J L, LIAN Q, XI S, et al. Crown fit and dimensional accuracy of zirconia fixed crowns based on the digital light processing technology[J]. Ceramics International, 2022, 48(12): 17852-17863. [34] 陈 芬, 吴亚茹, 朱 皓, 等. 氧化锆生物陶瓷的立体光固化制备及其力学与生物性能[J]. 硅酸盐学报, 2021, 49(9): 1837-1845. CHEN F, WU Y R, ZHU H, et al. Mechanical and biological properties of ZrO2 bioceramics by stereolithography technique[J]. Journal of the Chinese Ceramic Society, 2021, 49(9): 1837-1845 (in Chinese). [35] LI W L, NIE J B, LI M S, et al. Additive manufactured 3Y-TZP ceramics: study of micromechanical behavior by nanoindentation and microscratch method[J]. International Journal of Applied Ceramic Technology, 2020, 17(3): 854-863. [36] LI X B, ZHONG H, ZHANG J X, et al. Fabrication of zirconia all-ceramic crown via DLP-based stereolithography[J]. International Journal of Applied Ceramic Technology, 2020, 17(3): 844-853. [37] LIAN Q, WU X Q, LI D C, et al. Accurate printing of a zirconia molar crown bridge using three-part auxiliary supports and ceramic mask projection stereolithography[J]. Ceramics International, 2019, 45(15): 18814-18822. [38] LASGORCEIX M, CHAMPION E, CHARTIER T. Shaping by microstereolithography and sintering of macro-micro-porous silicon substituted hydroxyapatite[J]. Journal of the European Ceramic Society, 2016, 36(4): 1091-1101. [39] TOMECKOVA V, HALLORAN J W. Critical energy for photopolymerization of ceramic suspensions in acrylate monomers[J]. Journal of the European Ceramic Society, 2010, 30(16): 3273-3282. [40] TOMECKOVA V, HALLORAN J W. Cure depth for photopolymerization of ceramic suspensions[J]. Journal of the European Ceramic Society, 2010, 30(15): 3023-3033. [41] GENTRY S P, HALLORAN J W. Depth and width of cured lines in photopolymerizable ceramic suspensions[J]. Journal of the European Ceramic Society, 2013, 33(10): 1981-1988. [42] 杨建明, 肖志文, 王永宽, 等. DLP光固化3D打印精密铸造陶瓷型壳的研究[J]. 制造技术与机床, 2021(9): 49-53+57. YANG J M, XIAO Z W, WANG Y K, et al. Study on fabrication of precise casting ceramic shell by DLP light curing 3D printing[J]. Manufacturing Technology & Machine Tool, 2021(9): 49-53+57 (in Chinese). [43] 聂文忠, 陆建民, 马亚健, 等. 光固化成型工艺中零件表面质量的分析及研究[J]. 兵器材料科学与工程, 2020, 43(1): 105-109. NIE W Z, LU J M, MA Y J, et al. Analysis and research on surface quality of parts in stereolithography prototyping process[J]. Ordnance Material Science and Engineering, 2020, 43(1): 105-109 (in Chinese). [44] ZHANG J J, WEI L Y, MENG X X, et al. Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia[J]. Ceramics International, 2020, 46(7): 8745-8753. [45] ZHOU M P, LIU W, WU H D, et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography-Optimization of the drying and debinding processes[J]. Ceramics International, 2016, 42(10): 11598-11602. [46] LI H, LIU Y S, LIU Y S, et al. Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics[J]. Materials Characterization, 2020, 168: 110548. [47] JI S H, KIM D S, PARK M S, et al. Sintering process optimization for 3YSZ ceramic 3D-printed objects manufactured by stereolithography[J]. Nanomaterials (Basel, Switzerland), 2021, 11(1): 192. [48] MARINIS A, AQUILINO S A, LUND P S, et al. Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens[J]. The Journal of Prosthetic Dentistry, 2013, 109(3): 165-171. [49] LI H Z, SONG L, SUN J L, et al. Stereolithography-fabricated zirconia dental prostheses: concerns based on clinical requirements[J]. Advances in Applied Ceramics, 2020, 119(5/6): 236-243. [50] LI R, XU T, WANG Y, et al. Accuracy of zirconia crowns manufactured by stereolithography with an occlusal full-supporting structure: an in vitro study[J]. The Journal of Prosthetic Dentistry, 2022, S0022-3913(22)00064-6. [51] HE L, FEI F, WANG W B, et al. Support-free ceramic stereolithography of complex overhanging structures based on an elasto-viscoplastic suspension feedstock[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18849-18857. [52] LI W L, LIU M, LIU W W, et al. High-performance integrated manufacturing of a 3Y-TZP ceramic crown through viscoelastic paste-based vat photopolymerization with a conformal contactless support[J]. Additive Manufacturing, 2022, 59: 103143. [53] COPPOLA B, SCHMITT J, LACONDEMINE T, et al. Digital light processing stereolithography of zirconia ceramics: slurry elaboration and orientation-reliant mechanical properties[J]. Journal of the European Ceramic Society, 2022, 42(6): 2974-2982. [54] KIM J H, MAENG W Y, KOH Y H, et al. Digital light processing of zirconia prostheses with high strength and translucency for dental applications[J]. Ceramics International, 2020, 46(18): 28211-28218. [55] MARSICO C, ILO M, KUTSCH J, et al. Vat polymerization-printed partially stabilized zirconia: mechanical properties, reliability and structural defects[J]. Additive Manufacturing, 2020, 36: 101450. [56] ALHARBI N, OSMAN R B, WISMEIJER D. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology[J]. The International Journal of Prosthodontics, 2016, 29(5): 503-510. [57] METHANI M M, REVILLA-LEN M, ZANDINEJAD A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: a review[J]. Journal of Esthetic and Restorative Dentistry, 2020, 32(2): 182-192. [58] LI R, WANG Y, HU M L, et al. Strength and adaptation of stereolithography-fabricated zirconia dental crowns: an in vitro study[J]. The International Journal of Prosthodontics, 2019, 32(5): 439-443. [59] WANG W J, QIAN C, HU M L, et al. Optimisation of scanning parameters in stereolithography for dental zirconia ceramic fabrication[J]. Advances in Applied Ceramics, 2020, 119(5/6): 244-251. [60] OSMAN R B, ALHARBI N, WISMEIJER D. Build angle: does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology?[J]. The International Journal of Prosthodontics, 2017, 30(2): 182-188. [61] OSMAN R B, VAN DER VEEN A J, HUIBERTS D, et al. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75: 521-528. [62] TAN X, ZHAO Y W, LU Y Q, et al. Physical and biological implications of accelerated aging on stereolithographic additive-manufactured zirconia for dental implant abutment[J]. Journal of Prosthodontic Research, 2022, 66(4): 600-609. |
[1] | 杨文秀, 赵青林, 周明凯, 吴德凡, 武苗苗, 沈卫国. 复合增稠剂对大流态薄层砂浆性能的影响及其抗裂机理[J]. 硅酸盐通报, 2023, 42(6): 1938-1949. |
[2] | 孙溪晨, 陈柄丞, 汪洋, 冯君. 细菌ECC的自愈合及力学性能研究[J]. 硅酸盐通报, 2023, 42(6): 1960-1969. |
[3] | 刘云鹏, 彭波, 王韶辉, 王发洲. 吸水树脂集料混凝土的中心质效应研究[J]. 硅酸盐通报, 2023, 42(6): 1970-1979. |
[4] | 赵炎翡, 张诗凡, 闫兴非, 张涛, 彭帅, 吴波, 余振鹏, 杜晓庆. 砂浆-混凝土接缝界面动态受压力学性能试验研究[J]. 硅酸盐通报, 2023, 42(6): 1987-1995. |
[5] | 万子恒, 金子豪, 苏英, 王丽玥, 王斌. 缓凝剂对磷石膏-硫铝酸盐水泥复合胶凝体系性能影响[J]. 硅酸盐通报, 2023, 42(6): 2131-2039. |
[6] | 袁志勇, 阎法强, 许承铭, 吴佳莉, 廖仓冬, 郑猛, 吴英豪. 三种典型直流特高压用氧化铝电瓷组成、结构与力学性能的对比研究[J]. 硅酸盐通报, 2023, 42(6): 2206-2214. |
[7] | 张惠一, 桂尊曜, 蒲云东, 齐孟, 曹蔚琦, 袁小亚. 羟基化石墨烯对水泥基渗透结晶型防水材料力学性能的影响[J]. 硅酸盐通报, 2023, 42(5): 1569-1577. |
[8] | 陈宇, 林熙杰, 李长辉, 吴堃, 黄信. 抗收缩工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2023, 42(5): 1599-1607. |
[9] | 宋普涛, 王晶, 冷发光, 夏京亮, 陈茜, 张耀辰. 塑性膨胀剂对海上风电超高性能灌浆料性能的影响[J]. 硅酸盐通报, 2023, 42(5): 1608-1614. |
[10] | 李传习, 夏雨航, 王圣杰, 邓帅, 蒋健. 初凝超30min超早强UHPC制备及其机理[J]. 硅酸盐通报, 2023, 42(5): 1630-1639. |
[11] | 张晓静, 王德志, 靳凯戎, 刘江, 关岩. 花岗岩石粉对水泥浆体力学性能的影响[J]. 硅酸盐通报, 2023, 42(5): 1704-1709. |
[12] | 杜新宇, 陈潇, 周明凯, 张浩宇, 杨寅, 王瑜德. 含硫酸盐类固废对硅酸盐水泥水化影响研究[J]. 硅酸盐通报, 2023, 42(5): 1710-1720. |
[13] | 薛兴勇, 韩要丛, 苏俏俏, 徐梦雪, 崔学民. 铜渣基磷酸盐胶凝材料的力学性能与微观结构[J]. 硅酸盐通报, 2023, 42(5): 1750-1757. |
[14] | 隋洪宇, 李林, 温婧, 李芳芳, 姜涛. 硼泥焙烧预处理制备硫氧镁水泥[J]. 硅酸盐通报, 2023, 42(5): 1758-1766. |
[15] | 陈尚鸿, 林佳福, 杨政险, 张勇, 熊晓立. 钢渣-矿渣透水混凝土力学性能的试验研究[J]. 硅酸盐通报, 2023, 42(5): 1767-1777. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||