[1] VAN DEVENTER J S J, PROVIS J L, DUXSON P, et al. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials[J]. Waste and Biomass Valorization, 2010, 1(1): 145-155. [2] CHEN S K, RUAN S Q, ZENG Q, et al. Pore structure of geopolymer materials and its correlations to engineering properties: a review[J]. Construction and Building Materials, 2022, 328: 127064. [3] BARBHUIYA S, PANG E. Strength and microstructure of geopolymer based on fly ash and metakaolin[J]. Materials (Basel, Switzerland), 2022, 15(10): 3732. [4] LEE B, KIM G, KIM R, et al. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash[J]. Construction and Building Materials, 2017, 151: 512-519. [5] YUAN Q, GAO C, HUANG T J, et al. Factors influencing the properties of extrusion-based 3D-printed alkali-activated fly ash-slag mortar[J]. Materials, 2022, 15(5): 1969. [6] WAN Q, RAO F, SONG S X, et al. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios[J]. Cement and Concrete Composites, 2017, 79: 45-52. [7] 刘梦珠, 卞立波, 王 琴, 等. 碱激发矿渣/粉煤灰胶凝材料力学性能研究[J]. 粉煤灰综合利用, 2019, 32(5): 49-54. LIU M Z, BIAN L B, WANG Q, et al. Study on mechanical properties of alkali-activated slag/fly ash cementitious material[J]. Fly Ash Comprehensive Utilization, 2019, 32(5): 49-54 (in Chinese). [8] 艾纯志, 林 军. 碱激发粉煤灰混凝土微观性能试验研究[J]. 混凝土, 2022(4): 78-80+85. AI C Z, LIN J. Experimental study on microcosmic properties of alkali activation fly ash concrete[J]. Concrete, 2022(4): 78-80+85 (in Chinese). [9] 王 红, 董双快, 郭 爽, 等. 基于响应面法的水泥-粉煤灰-矿粉浆体流变分析[J]. 建筑结构, 2022, 52(增刊1): 1576-1581. WANG H, DONG S K, GUO S, et al. Rheological analysis of cement-fly ash-ore slurry based on response surface method[J]. Building Structure, 2022, 52(supplement 1): 1576-1581 (in Chinese). [10] 孙双月. 利用矿渣和粉煤灰制备地聚物胶凝材料的正交试验研究[J]. 中国矿业, 2019, 28(11): 118-122+127. SUN S Y. Orthogonal experiment research on geopolymer synthesis by utilizing slag and fly ash as raw material[J]. China Mining Magazine, 2019, 28(11): 118-122+127 (in Chinese). [11] 王顺风, 马 雪, 张祖华, 等. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762. WANG S F, MA X, ZHANG Z H, et al. Pore structure and compressive strength of fly ash-metakaolin based geopolymer[J]. Materials Review, 2018, 32(16): 2757-2762 (in Chinese). [12] 荆 锐, 刘 宇, 张慧杰, 等. 偏高岭土和粉煤灰对碱-矿渣复合胶凝材料的凝结时间及早期力学性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3237-3243. JING R, LIU Y, ZHANG H J, et al. Influences of metakaolin and fly ash on setting time and early age mechanical properties of alkali-activated slag composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3237-3243 (in Chinese). [13] 童国庆, 张吾渝, 季港澳, 等. 粉煤灰地聚物强度特性及微观机理研究[J]. 硅酸盐通报, 2020, 39(6): 1835-1841. TONG G Q, ZHANG W Y, JI G A, et al. Study on strength characteristics and microscopic mechanism of fly ash geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1835-1841 (in Chinese). [14] DUXSON P, LUKEY G C, VAN DEVENTER J S J. Thermal evolution of metakaolin geopolymers: part 1-physical evolution[J]. Journal of Non-Crystalline Solids, 2006, 352(52/53/54): 5541-5555. [15] 王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3197-3205. WANG D X, WANG H W, ZOU W L, et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 3197-3205 (in Chinese). [16] 黄丽萍, 马倩敏, 郭荣鑫, 等. 碱矿渣胶凝材料水化产物的试验研究[J]. 硅酸盐通报, 2020, 39(4): 1194-1200. HUANG L P, MA Q M, GUO R X, et al. Experimental study on hydration products of alkali-activated slag[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1194-1200 (in Chinese). [17] ZHANG Y S, SUN W, LI Z J. Hydration process of potassium polysialate (K-PSDS) geopolymer cement[J]. Advances in Cement Research, 2005, 17(1): 23-28. [18] 刘淑贤, 苏 严, 杨 敏, 等. 钢渣: 矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J]. 金属矿山, 2022(11): 252-258. LIU S X, SU Y, YANG M, et al. Experimental study on preparation of the steel slag and slag composite cementitious material and its gelling activity inspiration[J]. Metal Mine, 2022(11): 252-258 (in Chinese). [19] 郭晓潞, 施惠生, 夏 明. 不同钙源对地聚合物反应机制的影响研究[J]. 材料研究学报, 2016, 30(5): 348-354. GUO X L, SHI H S, XIA M. Effect of different calcium resouces on reaction mechanism of geopolymer[J]. Chinese Journal of Materials Research, 2016, 30(5): 348-354 (in Chinese). [20] ZHOU X X, SHEN J M. Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer[J]. Construction and Building Materials, 2020, 242: 118168. [21] 王 磊, 李金丞, 张晓伟, 等. 地质聚合物激发剂及其激发原理[J]. 无机盐工业, 2022, 54(2): 16-20. WANG L, LI J C, ZHANG X W, et al. Geopolymer activator and its excitation principle[J]. Inorganic Chemicals Industry, 2022, 54(2): 16-20 (in Chinese). [22] 余春松, 张玲玲, 郑大伟, 等. 固废基地质聚合物的研究及其应用进展[J]. 中国科学: 技术科学, 2022, 52(4): 529-546. YU C S, ZHANG L L, ZHENG D W, et al. Research progress of geopolymer materials prepared from solid waste and their applications[J]. Scientia Sinica (Technologica), 2022, 52(4): 529-546 (in Chinese). |