[1] 查 进, 周明凯, 贺图升, 等. 高性能混凝土早期裂缝原因分析与控制[J]. 国外建材科技, 2006, 27(4): 66-68. ZHA J, ZHOU M K, HE T S, et al. Cause analysis and control of early cracks in high performance concrete[J]. Science and Technology of Overseas Building Materials, 2006, 27(4): 66-68 (in Chinese). [2] 陈宝春, 李 聪, 黄 伟, 等. 超高性能混凝土收缩综述[J]. 交通运输工程学报, 2018, 18(1): 13-28. CHEN B C, LI C, HUANG W, et al. Review of ultra-high performance concrete shrinkage[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 13-28 (in Chinese). [3] 韩 松, 刘 丹, 张 戈, 等. 超低水胶比复合胶凝材料孔结构随养护制度和龄期的变化机理[J]. 硅酸盐学报, 2017, 45(11): 1594-1604. HAN S, LIU D, ZHANG G, et al. Mechanism of curing effect on pore structure of hardened cementitious composites with ultra-low water to binder ratio[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1594-1604 (in Chinese). [4] 何 真, 陈 衍, 梁文泉, 等. 内养护对混凝土收缩开裂性能的影响[J]. 新型建筑材料, 2008, 35(8): 7-11. HE Z, CHEN Y, LIANG W Q, et al. Effects of internal curing on shrinkage and cracking of concrete[J]. New Building Materials, 2008, 35(8): 7-11 (in Chinese). [5] 于 韵, 王晓玭, 邓芳明. SAP对高强混凝土塑性阶段抗裂性能的影响[J]. 混凝土, 2021(3): 27-30+34. YU Y, WANG X P, DENG F M. Effect of super-absorbent polymer on the plastic-shrinkage cracking of high-strength concrete[J]. Concrete, 2021(3): 27-30+34 (in Chinese). [6] 王力尚, 刘仍光, 李 晶, 等. SAP对燥热环境中混凝土早期开裂的改善作用[J]. 混凝土, 2014(2): 50-53. WANG L S, LIU R G, LI J, et al. Improving function of super absorbent polymer on early cracking of concrete under high temperature and dry environment[J]. Concrete, 2014(2): 50-53 (in Chinese). [7] 蒋子杰, 王 彬, 王祖坚. 内养生剂对大体积混凝土收缩变形特性的影响研究[J]. 西部交通科技, 2020(2): 27-29. JIANG Z J, WANG B, WANG Z J. Effect of internal curing agent on shrinkage and deformation characteristics of mass concrete[J]. Western China Communications Science & Technology, 2020(2): 27-29 (in Chinese). [8] 黄政宇, 王 嘉. 高吸水性树脂对超高性能混凝土性能的影响[J]. 硅酸盐通报, 2012, 31(3): 539-544. HUANG Z Y, WANG J. Effects of SAP on the performance of UHPC[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(3): 539-544 (in Chinese). [9] 秦鸿根, 高美蓉, 庞超明, 等. SAP内养护剂改善膨胀混凝土性能及其机理研究[J]. 建筑材料学报, 2011, 14(3): 394-399. QIN H G, GAO M R, PANG C M, et al. Research on performance improvement of expansive concrete with internal curing agent SAP and its action mechanism[J]. Journal of Building Materials, 2011, 14(3): 394-399 (in Chinese). [10] BEUSHAUSEN H, GILLMER M, ALEXANDER M. The influence of superabsorbent polymers on strength and durability properties of blended cement mortars[J]. Cement and Concrete Composites, 2014, 52: 73-80. [11] YANG H T, WU L P, LIU J H, et al. The re-swelling mechanism of superabsorbent polymers (SAP) in the SAP voids of cement-based materials[J]. Cement and Concrete Composites, 2022, 130: 104561. [12] WU L S, YU Z H, ZHANG C, et al. Shrinkage and tensile properties of ultra-high-performance engineered cementitious composites (UHP-ECC) containing superabsorbent polymers (SAP) and united expansion agent (UEA)[J]. Construction and Building Materials, 2022, 339: 127697. [13] XIE F X, ZHANG C L, CAI D P, et al. Comparative study on the mechanical strength of SAP internally cured concrete[J]. Frontiers in Materials, 2020, 7: 588130. [14] 陈显志, 董 伟, 乔 壮, 等. 新型内养生材料的掺入方式对混凝土力学性能的影响[J]. 中国建材科技, 2020, 29(5): 70-72. CHEN X Z, DONG W, QIAO Z, et al. Influence of mixing mode of new interior curing materials on mechanical property of concrete[J]. China Building Materials Science & Technology, 2020, 29(5): 70-72 (in Chinese). [15] 谢 鹏, 蓝堂伟. SAP内养护剂对混凝土性能的影响研究[J]. 混凝土世界, 2021(5): 68-72. XIE P, LAN T W. Study on the influence of curing agent of SAP on the performance of concrete[J]. China Concrete, 2021(5): 68-72 (in Chinese). [16] 佘安明, 马 坤, 王中平, 等. 低场核磁共振低温测孔技术表征硬化水泥浆体孔结构[J]. 建筑材料学报, 2021, 24(5): 916-920. SHE A M, MA K, WANG Z P, et al. Characterization of pore structure in hardened cement paste by low field NMR cryoporometry[J]. Journal of Building Materials, 2021, 24(5): 916-920 (in Chinese). [17] 何雨丹, 毛志强, 肖立志, 等. 核磁共振T2分布评价岩石孔径分布的改进方法[J]. 地球物理学报, 2005, 48(2): 373-378. HE Y D, MAO Z Q, XIAO L Z, et al. An improved method of using NMR T2 distribution to evaluate pore size distribution[J]. Chinese Journal of Geophysics, 2005, 48(2): 373-378 (in Chinese). [18] 邱继生, 邢 敏, 杨占鲁, 等. 冻融作用下聚丙烯纤维煤矸石混凝土孔结构研究[J]. 混凝土与水泥制品, 2020(6): 41-44+48. QIU J S, XING M, YANG Z L, et al. Pore structure characteristics of polypropylene fibre coal gangue concrete under freeze-thaw[J]. China Concrete and Cement Products, 2020(6): 41-44+48 (in Chinese). [19] 张俊儒, 闻毓民, 欧小强. 粉煤灰喷射混凝土孔隙结构的演变特征[J]. 西南交通大学学报, 2018, 53(2): 296-302. ZHANG J R, WEN Y M, OU X Q. Evolutionary characteristics of pore structure of fly ash shotcrete[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 296-302 (in Chinese). [20] 刘 倩, 申向东, 薛慧君, 等. 基于核磁共振技术对不同粗骨料混凝土孔隙特征试验研究[J]. 功能材料, 2017, 48(10): 10066-10070+10076. LIU Q, SHEN X D, XUE H J, et al. Experimental study on pore characteristics of different coarse aggregate concrete based on NMR technique[J]. Journal of Functional Materials, 2017, 48(10): 10066-10070+10076 (in Chinese). |