[1] 孙科科, 彭小芹, 冉 鹏, 等. 地聚合物混凝土抗冻性影响因素[J]. 材料导报, 2021, 35(24): 24095-24100+24106. SUN K K, PENG X Q, RAN P, et al. The influence factor of the anti-freeze of geopolymer concrete[J]. Materials Reports, 2021, 35(24): 24095-24100+24106 (in Chinese). [2] 高 矗, 孔祥振, 申向东. 基于GM(1,1)的应力损伤轻骨料混凝土抗冻性评估[J]. 工程科学与技术, 2021, 53(4): 184-190. GAO C, KONG X Z, SHEN X D. Freeze-thaw resistance evaluation of lightweight aggregate concrete with stress damage based on GM(1,1)[J]. Advanced Engineering Sciences, 2021, 53(4): 184-190 (in Chinese). [3] HOU P K, KAWASHIMA S, KONG D Y, et al. Modification effects of colloidal nano SiO2 on cement hydration and its gel property[J]. Composites Part B: Engineering, 2013, 45(1): 440-448. [4] HEIKAL M. Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1077-1087. [5] LUO J L, HOU D S, LI Q Y, et al. Comprehensive performances of carbon nanotube reinforced foam concrete with tetraethyl orthosilicate impregnation[J]. Construction and Building Materials, 2017, 131: 512-516. [6] YING J W, ZHOU B, XIAO J Z. Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2[J]. Construction and Building Materials, 2017, 150: 49-55. [7] MA B G, LI H N, MEI J P, et al. Effects of nano-TiO2 on the toughness and durability of cement-based material[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-10. [8] JIANG J H, DONG X B, WANG H, et al. Enhanced mechanical and photocatalytic performance of cement mortar reinforced by nano-TiO2 hydrosol-coated sand[J]. Cement and Concrete Composites, 2023, 137: 104906. [9] STAUB DE MELO J V, TRICHÊ S G. Study of the influence of nano-TiO2 on the properties of Portland cement concrete for application on road surfaces[J]. Road Materials and Pavement Design, 2018, 19(5): 1011-1026. [10] SALEMI N, BEHFARNIA K, ZAREE S A. Effect of nanoparticles on frost durability of concrete[J]. Asian Journal of Civil Engineering(BHRC) 2014, 15(3): 411-420 [11] LIU L, HE Z, CAI X H, et al. Application of low-field NMR to the pore structure of concrete[J]. Applied Magnetic Resonance, 2021, 52(1): 15-31. [12] LI Z, HAN B G, YU X, et al. Comparison of the mechanical property and microstructures of cementitious composites with nano- and micro-rutile phase TiO2[J]. Archives of Civil and Mechanical Engineering, 2019, 19(3): 615-626. [13] 黄志超, 肖 锐, 刘帅红, 等. 预加热对TA1钛合金自冲铆接性能的影响[J]. 锻压技术, 2020, 45(6): 80-85. HUANG Z C, XIAO R, LIU S H, et al. Influence of preheating on properties of self-piercing riveting for TA1 titanium alloy[J]. Forging & Stamping Technology, 2020, 45(6): 80-85 (in Chinese). [14] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard test method for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Construction Industry Press, 2009 (in Chinese). [15] 中华人民共和国建设部, 国家质量监督检验检疫总局. 混凝土力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Construction of the People’s Republic of China, State General Administration of Quality Supervision, Inspection and Quarantine. Standard for test method of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [16] TIAN H H, WEI C F, WEI H Z, et al. Freezing and thawing characteristics of frozen soils: bound water content and hysteresis phenomenon[J]. Cold Regions Science and Technology, 2014, 103: 74-81. [17] BAYER J V, JAEGER F, SCHAUMANN G E. Proton nuclear magnetic resonance (NMR) relaxometry in soil science applications [J]. The Open Magnetic Resonance Journal, 2010, 3(2): 15-26. [18] 薛慧君, 申向东, 邹春霞, 等. 基于NMR的风积沙混凝土冻融孔隙演变研究[J]. 建筑材料学报, 2019, 22(2): 199-205. XUE H J, SHEN X D, ZOU C X, et al. Freeze-thaw pore evolution of aeolian sand concrete based on nuclear magnetic resonance[J]. Journal of Building Materials, 2019, 22(2): 199-205 (in Chinese). [19] 潘 卓, 周 凯, 高 锐, 等. 基于NMR的寒区冻融风化循环下砂岩孔隙演化研究[J]. 地球流体, 2020, 2020(10): 1-12. PAN Z, ZHOU K, GAO R, et al. Research on the pore evolution of sandstone in cold regions under freeze-thaw weathering cycles based on NMR[J]. Geofluids, 2020, 2020(10): 1-12 (in Chinese). [20] MUHD NORHASRI M S, HAMIDAH M S, FADZIL A M. Applications of using nano material in concrete: a review[J]. Construction and Building Materials, 2017, 133: 91-97. [21] DENG X H, GAO X Y, WANG R, et al. Investigation of microstructural damage in air-entrained recycled concrete under a freeze-thaw environment[J]. Construction and Building Materials, 2021, 268: 121219. [22] 薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9): 2285-2293. XUE W P, LIU X Y, YAO Z S, et al. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2285-2293 (in Chinese). [23] SHAHRUL S, MOHAMMED B S, WAHAB M M A, et al. Mechanical properties of crumb rubber mortar containing nano-silica using response surface methodology[J]. Materials, 2021, 14(19): 5496. [24] MOHAMMED B S, ADAMU M. Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica[J]. Construction and Building Materials, 2018, 159: 234-251. [25] 洪 旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报, 2019, 36(12): 2822-2832. HONG Q, SHI Y Y, LU D N, et al. Multi-response parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2822-2832 (in Chinese). [26] PATHAK S S, VESMAWALA G R. Effect of nano TiO2 on mechanical properties and microstructure of concrete[J]. Materials Today: Proceedings, 2022, 65: 1915-1921. [27] WANG R J, HU Z Y, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze-thaw environment[J]. Construction and Building Materials, 2022, 321: 126371. [28] ABDALLA J A, THOMAS B S, HAWILEH R A, et al. Influence of nano-TiO2, nano-Fe2O3, nano clay and nano-CaCO3 on the properties of cement/geopolymer concrete[J]. Cleaner Materials, 2022, 4: 100061. |